Algorithms

Lecture 17

Name:_

1) In Chapters 7 and 8 we switch from algorithm development (e.g., merge sort algorithm) and its analysis (e.g., $\Theta(n \log_2 n))$ to analyzing the *computation complexity of a problem* (e.g., the sorting problem).

Chapter 7: Computational Complexity for Sorting Problem

Goal: We what to determine a lower bound on the **best possible** sorting algorithm (for the worst-case problem instance -- data arrangement) that compares items.

<u>Result</u>: best possible sorting algorithm that compares items must do at least $\mathcal{O}(n \log_2 n)$) comparisons. Important so:

- you do not waste your time looking for an $\Theta(n)$ sorting algorithm that compare items, and
- you think about sorts faster than $\mathcal{O}(n \log_2 n)$ that **do not** compare items.

To understand the computational-complexity argument for the sorting problem which compares items, consider 3 distinct items in variables: a, b, c.

a) Complete the decision tree to represent the necessary comparisons to determine the correct sorted order:

- b) What do the leave nodes in the above decision tree for a sorting algorithm represent?
- c) If we have n items to sort, how many leave nodes would be needed in the decision tree for any sorting algorithm?
- d) What part of the decision tree represents the worst-case behavior for sorting?

e) To prove the result ("**best possible** sorting algorithm that compares items must do at least $\Theta(n \log_2 n)$) comparisons"), using the decision tree what are we going to have to show (proof)?

Algorithms

Lecture 17

Name:_____

2. If m is the number of leaves in a binary tree (e.g., the decision tree), what must be the minimum depth (height) d of the binary tree? (Hint: consider the shape of the binary tree to minimize the height of the tree)

3. How might we make use of Stirlings approximation (stated below)?

 $\log_2 n! = n \log_2 n - n/\ln 2 + (1/2)\log_2 n + O(1)$

4. How might we get around this bound to do better than a $\mathcal{O}(n \log_2 n)$ sorting algorithm?

Name:

Algorithms

Chapter 8: Computational Complexity for Searching Problem

Goal: We what to determine a lower bound on the **best possible** searching algorithm (for the worst-case problem instance -- data arrangement) that compares items.

Lecture 17

<u>Result</u>: best possible searching algorithm that compares items must do at least $\Theta(\log_2 n)$ comparisons.

For any searching algorithm, we can draw a decision tree. The following decision tree is for binary searching of an array S with 7 elements and a target of x.

5) Draw a similar decision tree for sequential search of unsorted array S with 7 elements and a target of x.

Algorithms

Lecture 17

6) What are the general characteristics of decision trees for search algorithms that compare elements?

7) What part of the decision tree represents the worst-case behavior for searching?

8) To prove the result ("**best possible** searching algorithm that compares items must do at least $\Theta(\log_2 n)$ comparisons"), using the decision tree what are we going to have to show (proof)?

9) How might we get around this bound to do better than a $\Theta(\log_2 n)$ searching algorithm?