Algorithms Lecture 17 Name:

1) In Chapters 7 and 8 we switch from algorithm development (e.g., merge sort algorithm) and its analysis (e.g., G(n
log, n)) to analyzing the computation complexity of a problem (e.g., the sorting problem).

Chapter 7: Computational Complexity for Sorting Problem
Goal: We what to determine a lower bound on the best possible sorting algorithm (for the worst-case problem
instance -- data arrangement) that compares items.

Result: best possible sorting algorithm that compares items must do at least G\n log, n)) comparisons.
Important so:

* you do not waste your time looking for an &Xn) sorting algorithm that compare items, and

* you think about sorts faster than &n log, n) that do not compare items.

To understand the computational-complexity argument for the sorting problem which compares items, consider 3
distinct items in variables: a, b, c.
a) Complete the decision tree to represent the necessary comparisons to determine the correct sorted order:

sorted order

b) What do the leave nodes in the above decision tree for a sorting algorithm represent?

c) If we have n items to sort, how many leave nodes would be needed in the decision tree for any sorting algorithm?

d) What part of the decision tree represents the worst-case behavior for sorting?

e) To prove the result ("best possible sorting algorithm that compares items must do at least &n log, n))
comparisons"), using the decision tree what are we going to have to show (proof)?

Lecture 17 Page 1

Algorithms Lecture 17 Name:

2. If m is the number of leaves in a binary tree (e.g., the decision tree), what must be the minimum depth (height) d
of the binary tree? (Hint: consider the shape of the binary tree to minimize the height of the tree)

3. How might we make use of Stirlings approximation (stated below)?

log;n!=nlog.n-n/ln2+ (1/2)logxn+ O(1)

4. How might we get around this bound to do better than a &n log, n) sorting algorithm?

Lecture 17 Page 2

Algorithms Lecture 17 Name:

Chapter 8: Computational Complexity for Searching Problem

Goal: We what to determine a lower bound on the best possible searching algorithm (for the worst-case problem
instance -- data arrangement) that compares items.

Result: best possible searching algorithm that compares items must do at least &Xlog, n) comparisons.

For any searching algorithm, we can draw a decision tree. The following decision tree is for binary searching of an
array S with 7 elements and a target of x.

1 2 34 5 6 7

X: S:

~._ initial compare -~

5) Draw a similar decision tree for sequential search of unsorted array S with 7 elements and a target of x.

Lecture 17 Page 3

Algorithms Lecture 17 Name:

6) What are the general characteristics of decision trees for search algorithms that compare elements?

7) What part of the decision tree represents the worst-case behavior for searching?

8) To prove the result ("best possible searching algorithm that compares items must do at least &log, n)
comparisons"), using the decision tree what are we going to have to show (proof)?

9) How might we get around this bound to do better than a &Xlog, n) searching algorithm?

Lecture 17 Page 4

