Algorithms

\qquad

1) In Chapters 7 and 8 we switch from algorithm development (e.g., merge sort algorithm) and its analysis (e.g., Θ (n $\log _{2} \mathrm{n}$)) to analyzing the computation complexity of a problem (e.g., the sorting problem).

Chapter 7: Computational Complexity for Sorting Problem
Goal: We what to determine a lower bound on the best possible sorting algorithm (for the worst-case problem instance -- data arrangement) that compares items.

Result: best possible sorting algorithm that compares items must do at least $\Theta\left(\mathrm{n} \log _{2} \mathrm{n}\right)$) comparisons. Important so:

- you do not waste your time looking for an $\Theta(\mathrm{n})$ sorting algorithm that compare items, and
- you think about sorts faster than $\Theta\left(n \log _{2} n\right)$ that do not compare items.

To understand the computational-complexity argument for the sorting problem which compares items, consider 3 distinct items in variables: $\mathrm{a}, \mathrm{b}, \mathrm{c}$.
a) Complete the decision tree to represent the necessary comparisons to determine the correct sorted order:

b) What do the leave nodes in the above decision tree for a sorting algorithm represent?
c) If we have n items to sort, how many leave nodes would be needed in the decision tree for any sorting algorithm?
d) What part of the decision tree represents the worst-case behavior for sorting?
e) To prove the result ("best possible sorting algorithm that compares items must do at least $\Theta\left(n \log _{2} n\right)$) comparisons"), using the decision tree what are we going to have to show (proof)?

Algorithms

2. If m is the number of leaves in a binary tree (e.g., the decision tree), what must be the minimum depth (height) d of the binary tree? (Hint: consider the shape of the binary tree to minimize the height of the tree)
3. How might we make use of Stirlings approximation (stated below)?
$\log _{2} \mathrm{n}!=\mathrm{n} \log _{2} \mathrm{n}-\mathrm{n} / \ln 2+(1 / 2) \log _{2} \mathrm{n}+O(1)$
4. How might we get around this bound to do better than a $\Theta\left(n \log _{2} n\right)$ sorting algorithm?

Algorithms

Lecture 17
Name: \qquad
Chapter 8: Computational Complexity for Searching Problem
Goal: We what to determine a lower bound on the best possible searching algorithm (for the worst-case problem instance -- data arrangement) that compares items.

Result: best possible searching algorithm that compares items must do at least $\Theta\left(\log _{2} n\right)$ comparisons.
For any searching algorithm, we can draw a decision tree. The following decision tree is for binary searching of an array S with 7 elements and a target of x.

5) Draw a similar decision tree for sequential search of unsorted array S with 7 elements and a target of x.

Algorithms

6) What are the general characteristics of decision trees for search algorithms that compare elements?
7) What part of the decision tree represents the worst-case behavior for searching?
8) To prove the result ("best possible searching algorithm that compares items must do at least $\Theta\left(\log _{2} n\right.$) comparisons"), using the decision tree what are we going to have to show (proof)?
9) How might we get around this bound to do better than a $\Theta\left(\log _{2} n\right)$ searching algorithm?
