\qquad

Algorithm 1.1 Sequential Search

Problem: Is the key x in the array S of n keys?
Inputs (parameters): positive integer n, array of keys S indexed from 1 to n, and a key x.
Outputs: location, the location of x in S (0 if x is not in S).

```
void seqsearch (int \(n\),
const keytype \(S[\) ],
keytype \(x\),
    index \& location ) \{
    location \(=1\);
    while (location <= \(n \boldsymbol{\&} \boldsymbol{\&} S[\) location \(]\) ! \(=x\) )
        location++;
    if \((\) location \(>n\) )
        location \(=0\);
\}
```

Big-oh Definition - asymptotic upper bound
For a given complexity function $f(n), O(f(n))$ is the set of complexity functions $g(n)$ for which there exists some positive real constant c and some nonnegative integer N such that for all $n \geq N$,

$$
g(n) \leq c \times f(n)
$$

$\mathrm{T}(\mathrm{n})=\mathrm{c}_{1}+\mathrm{c}_{2} \mathrm{n}=100+10 \mathrm{n}$ is $O(\mathrm{n})$.
"Proof": Pick $\mathrm{c}=110$ and $\mathrm{N}=1$, then $100+10 \mathrm{n} \leq 110 \mathrm{n}$ for all $\mathrm{n} \geq 1$.
$100+10 \mathrm{n} \leq 110 \mathrm{n}$
$100 \leq 100 \mathrm{n}$
$1 \leq \mathrm{n}$

Problem with big-oh:

If $\mathrm{T}(\mathrm{n})$ is $O(\mathrm{n})$, then it is also $O\left(\mathrm{n}^{2}\right), O\left(\mathrm{n}^{3}\right), O\left(\mathrm{n}^{4}\right), O\left(2^{\mathrm{n}}\right), \ldots$ since these are also upper bounds. What we want is a "tight" upper bound, i.e., the "slowest" growing upper bound.
\qquad
Omega Definition - asymptotic lower bound
For a given complexity function $f(n), \Omega(f(n))$ is the set of complexity functions $g(n)$ for which there exists some positive real constant c and some nonnegative integer N such that for all $n \geq N$,

$\mathrm{T}(\mathrm{n})=\mathrm{c}_{1}+\mathrm{c}_{2} \mathrm{n}=100+10 \mathrm{n}$ is $\Omega(\mathrm{n})$.
"Proof": We need to find ac and N so that the definition is satisfied, i.e., $100+10 \mathrm{n} \geq \mathrm{c} \mathrm{n}$ for all $\mathrm{n} \geq \mathrm{N}$.
$0)$ What c and N will work?

Theta Definition - asymptotic upper and lower bound, i.e., a "tight" bound or "best" big-oh For a given complexity function $f(n), \theta(f(n))$ is the set of complexity functions $g(n)$ for which there exists some positive real constants c and d and some nonnegative integer N such that for all $n \geq N$,

$$
c \times f(n) \leq g(n) \leq d \times f(n) .
$$

Since $T(n)=c_{1}+c_{2} n=100+10 n$ is both $O(n)$ and $\Omega(n)$, it is $\theta(n)$.

Algorithms

1) Suppose that you have an $\theta\left(n^{5}\right)$ algorithm that required 10 seconds to run on a problem size of 1000 . How long would you expect the algorithm to run on a problem size of 10,000 ?
2) Analyze the below algorithm to determine an obvious big-oh notation and its theta notation, $\theta()$. $\mathrm{i}:=\mathrm{n}$
while (i $>=1$) do
for $\mathrm{j}:=1$ to i do for $\mathrm{k}:=1$ to n do
something that takes $\mathrm{O}(1)$ end for k
end for j
$\mathrm{i}:=\mathrm{i} / 2$
end while
3) Analyze the below algorithm to determine an obvious big-oh notation and its theta notation, $\theta()$.
i := n
while i>0 do
for $\mathrm{j}=1$ to n do
$\mathrm{k}:=1$
while $\mathrm{k}<=\mathrm{i}$ do
something that takes $\mathrm{O}(1)$
$\mathrm{k}:=\mathrm{k} * 2$
end while
end for
i := i / 2
end while

Algorithms \qquad
void seqsearch (int n,
const keytype $S[$],
keytype x,
index \& location) \{
location $=1$;
while (location $<=n \boldsymbol{\&} \boldsymbol{\&} S[$ location $]!=x)$
location++;
if $($ location $>n$)
location $=0$;
\}
4) For sequential search, what is the best-case time complexity $B(n)$?
5) For sequential search, what is the worst-case time complexity $W(\mathrm{n})$?
6) If the probability of a successful sequential search is p, then what is the probability on an unsuccessful search?
7) If the probability of a successful sequential search is p, then what is the probability of finding the target value at a specific index in the array?

\# compares:	1	2	3	\ldots	n

probability:

Write a summation for the average number of comparisons.
8) What is the average-case time complexity, A (n)?

