Name:_

The microprogrammed version of MARIE executes a fixed microprogam to perform the fetch-decode-execute cycle. The instruction format for the microinstructions could look like:

MicroOp1 encodes the type of register transfer notation (RTN) to perform (e.g., AC $\leftarrow 0$ is 00010₂)

MicroOp2 contains the binary codes for each instruction to allow comparison to the IR opcode.

Jump is a single bit indicating that the value in the **Dest** field is a valid micro-address and should be placed in the microsequencer; if **Jump** is "FALSE" (0), then increment to the next microinstruction.

MicroOp MicroOp Microoperation Microoperation Code Code 00000 NOP 01100 $MBR \leftarrow M[MAR]$ 00001 01101 $AC \leftarrow 0$ $OutREG \leftarrow AC$ 00010 $AC \leftarrow AC - MBR$ 01110 $PC \leftarrow IR[11-0]$ 00011 01111 $AC \leftarrow AC + MBR$ $PC \leftarrow MBR$ 00100 $AC \leftarrow InREG$ 10000 $PC \leftarrow PC + 1$ If AC = 0000101 10001 $IR \leftarrow M[MAR]$ If AC > 000110 10010 $M[MAR] \leftarrow MBR$ If AC < 000111 10011 $MAR \leftarrow IR[11-0]$ If IR[11-10] = 0001000 10100 $MAR \leftarrow MBR$ 01001 10101 If IR[11-10] = 01 $MAR \leftarrow PC$ If IR[11-10] = 1001010 10110 $\max \leftarrow x$ If IR[15-12] = 01011 10111 $MBR \leftarrow AC$ MicroOp2[4-1]

Table 4.8. Microoperation Codes and Corresponding MARIE RTN (p. 221)

Figure 4.19. Microprogrammed Control Unit

Name:

Notes on the Microprogrammed Control Unit:

- It's important to remember that a microprogrammed control unit works like a • system-in-miniature.
- Microinstructions are fetched, decoded, and executed in the same manner as regular instructions. • This extra level of instruction interpretation is what makes microprogrammed control slower than hardwired control.
- The advantages of microprogrammed control are that it can support very complcated ٠ instructions and only the microprogram needs to be changed if the instruction set changes (or an error is found).

Revised Figure 4.21 Partial Microprogram						
Part						
of	RTN		MicroOp	MicroOp		
Cycle	(of MicroOp1)	µAddr	1	2	Jump	Dest
Fetch	MAR ← PC	0	01001	0000	0	0
	$MBR \leftarrow M[MAR]$	1	01100	0000	0	0
	IR ← MBR	2	00101	0000	0	0
	$PC \leftarrow PC + 1$	3	10000	0000	0	0
Decode	If ADD, Jump	4	10111	00110	1	1710
	If LOAD, Jump	5	10111	00010	1	
("Jump	If STORE, Jump	6	10111	00100	1	
Table")	If SKIPCOND, Jump	7	10111	10000	1	
	If SUBT, Jump	8	10111	01000	1	
	If JUMP, Jump	9	10111	10010	1	
	If ADDI, Jump	10	10111	10110	1	
	If CLEAR, Jump	11	10111	10100	1	
	If JNS, Jump	12	10111	00000	1	
	If JUMPI, Jump	13	10111	11000	1	
	If INPUT, Jump	14	10111	01010	1	
	If OUTPUT, Jump	15	10111	01100	1	
	If HALT, Jump	16				
Execute ADD	MAR ← IR[11-0]	17	00111	00000	0	0
	MBR ← M[MAR]	18	01100	00000	0	0
	AC ← AC + MBR	19	00011	00000	1	0
Execute LOAD	MAR ← IR[11-0]	20				
	MBR ← M[MAR]	21				
	AC ← MBR	22				
Execute STORE	MAR ← IR[11-0]	23				
	MBR ← AC	24				
	M[MAR] ← MBR	25				
Execute SKIPCOND		26				
		27				
		28				
		29				
		30				
		31				
		32				
		33				

34

Revised Figure 4.21 Partial Microprogram