8-bit Sign Exponent 23-bit Mantissa (for normalized values, leading 1 not stored) bit (bias 127) $0 \equiv +$ 1 Ξ -

IEEE 754 Standard Floating Point Representation

		11-bit	
S	Sign	Exponent	52-bit Mantissa
	bit	(bias 1023)	(for normalized values, leading 1 not stored)
$0 \equiv +$			
1 Ξ -			

Single I	Precision	Double Precision		Object
Exponent	Mantissa	Exponent	Mantissa	Represented
1-254	any value	1-2046	any value	normalized #
0	0	0	0	0
0	nonzero	0	nonzero	denormalized #
255	0	2,047	0	infinity
255	nonzero	2,047	nonzero	NaN (not a #)

1) Convert the value 23.625_{10} to its binary representation.

2) Normalize the above value so that the most significant 1 is immediately to the left of the radix point. Include the corresponding exponent value to indicate the motion of the radix point.

3) Write the corresponding 32-bit IEEE 754 floating point representation for 23.625₁₀.

4) Write the corresponding 64-bit IEEE 754 floating point representation for 23.625₁₀.

5) What would be the smallest positive normalized 32-bit IEEE 754 floating point value?

6) How would you add two IEEE 754 floating point numbers?

7) How would you multiply two IEEE 754 floating point numbers?

- 8) Consider adding 1.011×2^{40} and 1.01×2^{5} .
- a) How many places does the second number's mantissa get shifted?

b) After we add these two numbers and store the results back into a 32-bit IEEE 754 value, what would be the result?