\qquad Name: \qquad
Absent:

IEEE 754 Standard Floating Point Representation

8-bit

	Sign bit
Exponent (bias 127)	23-bit Mantissa (for normalized values, leading 1 not stored)
$0 \equiv+\square$	
$1 \equiv-\square$	

11-bit
Sign Exponent
52-bit Mantissa

Single Precision		Double Precision		Object
Exponent	Mantissa	Exponent	Mantissa	Represented
$1-254$	any value	$1-2046$	any value	normalized \#
0	0	0	0	0
0	nonzero	0	nonzero	denormalized \#
255	0	2,047	0	infinity
255	nonzero	2,047	nonzero	NaN (not a \#)

1) Convert the value 23.625_{10} to its binary representation.

2) Normalize the above value so that the most significant 1 is immediately to the left of the radix point. Include the corresponding exponent value to indicate the motion of the radix point.

3) Write the corresponding 32-bit IEEE 754 floating point representation for 23.625_{10}.
\qquad
Absent:
4) Write the corresponding 64-bit IEEE 754 floating point representation for 23.625_{10}.
5) What would be the smallest positive normalized 32-bit IEEE 754 floating point value?
6) How would you add two IEEE 754 floating point numbers?
7) How would you multiply two IEEE 754 floating point numbers?
8) Consider adding 1.011×2^{40} and 1.01×2^{5}.
a) How many places does the second number's mantissa get shifted?
b) After we add these two numbers and store the results back into a 32-bit IEEE 754 value, what would be the result?
