Name:_____

Team #:_____ Absent:

ASCII Character Representation

	3			5	8			1		1		1		-	
0	NUL	16	DLE	32		48	0	64	@	80	Ρ	96	*	112	р
1	SOH	17	DC1	33	1	49	1	65	А	81	Q	97	а	113	q
2	STX	18	DC2	34		50	2	66	В	82	R	98	b	114	r
3	ETX	19	DC3	35	#	51	3	67	С	83	S	99	С	115	s
4	EOT	20	DC4	36	\$	52	4	68	D	84	Т	100	d	116	t
5	ENQ	21	NAK	37	%	53	5	69	Е	85	U	101	е	117	u
6	ACK	22	SYN	38	&	54	6	70	F	86	٧	102	f	118	v
7	BEL	23	ETB	39	9	55	7	71	G	87	W	103	g	119	w
8	BS	24	CAN	40	(56	8	72	Н	88	Х	104	h	120	x
9	HT	25	EM	41)	57	9	73	1	89	Y	105	i	121	у
10	LF	26	SUB	42	*	58	:	74	J	90	Ζ	106	j	122	z
11	VT	27	ESC	43	+	59	;	75	К	91	[107	k	123	{
12	FF	28	FS	44	з	60	<	76	L	92	١	108	I	124	1
13	CR	29	GS	45	-	61	=	77	М	93]	109	m	125	}
14	SO	30	RS	46	3 3	62	>	78	Ν	94	•	110	n	126	2
15	SI	31	US	47	7	63	?	79	0	95	-	111	0	127	DEL

Abbreviations

				_
NUL	Null	DLE	Data link escape	
SOH	Start of heading	DC1	Device control 1	
STX	Start of text	DC2	Device control 2	
ETX	End of text	DC3	Device control 3	
EOT	End of transmission	DC4	Device control 4	
ENQ	Enquiry	NAK	Negative acknowledge	
ACK	Acknowledge	SYN	Synchronous idle	
BEL	Bell (beep)	ETB	End of transmission block	
BS		CAN	Cancel	
	Backspace	EM	End of medium	
HT	Horizontal tab	SUB	Substitute	
LF	Line feed, new line	ESC	Escape	
VT	Vertical tab	FS	File separator	
FF	Form feed, new page	GS	Group separator	
CR	Carriage return	RS	Record separator	
SO	Shift out	US	Unit separator	
SI	Shift in	DEL	Delete/Idle	

Team #:_____ Absent:

1) The ASCII code for character 'A' is 65_{10} , 'B' is 66_{10} , ... and 'a' is 97_{10} , 'b' is 98_{10} ,

- a) What would be the 7-bit binary value used to represent 'A'?
- b) What would be the 7-bit binary value used to represent 'a'?
- c) How does an upper-case letter differ from its corresponding lower-case letter?

d) Even parity prepends a 0 or 1 so as to make the total number of 1's be even. What is the 8-bit ASCII value for" 'A':

'a':

e) What error cannot be detected by even parity?

2 a) For the 8-bit data 01001011 ₂ develop the Hamming codeword for one-bit error detection and correction:											•
12	11	10	9	8	7	6	5	4	3	2	1
D_7	D ₆	D ₅	D_4	P ₈	D ₃	D_2	D ₁	P_4	D_0	P_2	P ₁
0	1	0	0		1	0	1		1		
4+8	1+2+8	2+8	1+8	8	1+2+4	2+4	1+4	4	1+2	2	1

2 a) For the 8-bit data 01001011_2 develop the Hamming codeword for one-bit error detection and correction:

Check bit P_1 looks at bit positions 1, 3, 5, 7, 9, and 11 Check bit P_2 looks at bit positions 2, 3, 6, 7, 10, and 11 Check bit P_4 looks at bit positions 4, 5, 6, 7, and 12 Check bit P_8 looks at bit positions 8, 9, 10, 11, and 12

- b) If bit D_5 gets flipped (an error), then how would we be able to detect an error?
- c) If bit D_5 gets flipped (an error), then how would we be able to know which bit to correct?

d) For the 8-bit data 110010012 develop the Hamming codeword for one-bit error detection and correction.												
	12	11	10	9	8	7	6	5	4	3	2	1
	D_7	D_6	D ₅	D_4	P ₈	D ₃	D_2	D_1	P ₄	D_0	P ₂	P ₁
	0	1	0	0		1	0	1		1		
	4+8	1+2+8	2+8	1+8	8	1+2+4	2+4	1+4	4	1+2	2	1

d) For the 8-bit data 11001001₂ develop the Hamming codeword for one-bit error detection and correction: