
The final for both sections will be 8-9:50 AM on Tuesday, December 16 in ITT 328.   The test
will be closed book and notes, except for one 8.5” x 11” sheet of paper (front and back) with
notes, purple MARIE Assembly Language handout, and the your MIPS Assembly Language
Guide (both available at:  http://www.cs.uni.edu/~fienup/cs041f08/lectures).  

About 75% of the Final will focus on the material since the last test, and about 25% will focus on
the material from tests 1 and 2.  

MIPS Assembly Language 
MIPS Processor Architecture:  registers, register conventions, addressing modes, memory layout
Basic MIPS Instruction Set:  loads/stores, arithmetic instructions, logical instructions, shift/rotate
instructions, branch/jump instructions
SPIM Assembler Directives:  .data, .text, .word, .globl, .asciiz
MIPS Instruction Set:  three ML instruction formats 
Subprograms:  MIPS Register conventions 
MIPS Logical, Shift/Rotate Instructions
SPIM I/O and other System Calls: 
SPIM Assembler Directives:  .asciiz, .ascii, .align, .space
Arrays:  element addressing 1-d, 2-d, 3-d, and higher
Walking pointer through an array

In addition to knowledge about the above concepts, the following assembly-language
programming skills are to be tested too:
1)  translate high-level language control statements (while, for, if, etc.) into MARIE and MIPS
assembly language (be able to handle complex Boolean expressions involving ANDs, ORs, etc.)
2)  translate high-level language code containing array accesses into MIPS assembly language
3)  use MIPS register conventions to decide which arguments/parameters and local variables
should be stored in caller-saved ($a and $t-registers) or callee-saved ($s-registers)
4)  translate high-level language subprograms into MIPS assembly language (passing parameters
into the subprogram using the $a registers, building the call frame on the run-time stack if
necessary, save $s and $ra registers if necessary, passing the value returned by a function in the
$v0 register, restoring $s and $ra registers if necessary, jr back to the caller)

Hardware Support for the Operating System sections 8.1-8.2 
You should understand the general concept of how the operating system with hardware support
provide protection from user programs that:
1. go into infinite loops 
2. try to access memory of other programs or the OS
3. try to access files of other programs

This involves understanding the concepts of 
1. CPU timer
2. dual-mode operation of the CPU, and idea of  privileged instructions and non-privileged

instructions
3. ways to restrict a user program to its allocated address space



I/O sections 7.1-7.4
General I/O characteristics
I/ O Controller role and function
I/O address mapping:  Isolated-I/O vs. memory-mapped I/O
I/O Data Transfer:  programmed I/O, interrupt-driven I/O, and direct-memory access (DMA) 
General interrupt mechanism 
Usage of interrupts by the hardware/operating system to restrict a user program's activities

Misc. material:
Process control blocks (PCB) and OS queues for I/O and process scheduling


