The Union-Find Partition in Evolutionary

Operators for Spanning Trees
Encoded as Lists of Edges

Bryant A. Julstrom
Department of Computer Science
St. Cloud State University
720 Fourth Avenue South
St. Cloud, MN 56301
julstrom@eeyore.stcloudstate.edu

Abstract

Students generally encounter the union-find partition in an efficient implementation
of Kruskal’s algorithm, which identifies a minimum spanning tree in a weighted
undirected graph. The union-find structure can also be applied in other algorithms
involving spanning trees. In particular, lists of edges can encode candidate spanning
trees in evolutionary algorithms that search spaces of spanning trees. Effective and
efficient crossover and mutation operators for this coding use union-find partitions
of the target graph’s vertices, and exhibit additional applications of the union-find
structure.



1 Introduction

A graph is a non-empty set V' of vertices and a set E of pairs of vertices called
edges. If the pairs in F are not ordered—that is, if no direction is associated with
edges—the graph is undirected, and if a function w : F — R associates a numerical
value with each edge, the graph is weighted. Figure 1(a) shows a weighted
undirected graph on ten vertices. Undergraduate courses in data structures, discrete
math, and algorithms introduce students to graphs, graph representations, and
graph algorithms.

A spanning tree of an undirected graph G is a maximal acyclic subgraph of GG; a
spanning tree connects all of GG’s vertices and contains no cycles. In a weighted
graph, the weight of a spanning tree is the sum of the weights of its edges. A
standard problem is to find a spanning tree of minimum weight, called a minimum
spanning tree (MST), on a weighted undirected graph. Students generally
investigate and implement two eponymous polynomial-time greedy algorithms that
find a MST, due to Kruskal (1956) and to Prim (1957). Figure 1(b) shows a
minimum spanning tree on the graph of Figure 1(a); it has weight 408.

The union-find partition is an abstract data type whose values are partitions of a
finite set of objects and whose three operations initialize a partition to singletons,
identify the subset in a partition to which an object belongs, and form the union of
two subsets. Kruskal’s algorithm, which builds a MST by repeatedly including in it
the lowest-weight edge that connects two currently unconnected groups of vertices,
motivates a discussion of the union-find partition and its efficient implementation.

Given a weighted undirected graph GG, many interesting and useful problems seek a
minimum-weight spanning tree on G that satisfies additional constraints. For
example, the degree-constrained minimum spanning tree problem (d-MSTP)

@ (b)

Figure 1: (a) A weighted undirected graph on ten vertices. (b) A minimum spanning
tree on the graph; it has weight 408.



bounds the number of edges in which each vertex may participate. Finding an
unconstrained minimum spanning tree is computationally easy, but many such
problems, including the d-MSTP, are NP-hard. It is unlikely that polynomial-time
algorithms exist to solve these problems exactly, and for approximate solutions we
turn to heuristics, including evolutionary algorithms.

An evolutionary algorithm (EA) is a probabilistic search procedure inspired by
biological evolution. It maintains a population of data structures, called
chromosomes, that encode candidate solutions to the target problem instance, and
it assigns each chromosome a numerical fitness indicating the quality of the solution
it represents. The EA selects chromosomes to survive or to reproduce
probabilistically: the more fit chromosomes are more likely to be selected.
Operators inspired by genetic recombination and mutation generate novel
chromosomes. Crossover (or recombination) combines the genetic material of two
parents; mutation randomly modifies one parent chromosome. Successive
generations of such chromosomes yield codings of better and better solutions. Béck,
Fogel, and Michalewicz (2000) provide an excellent, current introduction to
evolutionary algorithms.

The most important design choice confronting the author of an evolutionary
algorithm is the coding by which the EA’s chromosomes will represent candidate
solutions. An effective coding of spanning trees for evolutionary search is simply as
lists of edges, as in recent EAs for the d-MSTP (Raidl, 2000) and the rectilinear
Steiner problem, which seeks a shortest spanning tree made up of horizontal and
vertical line segments (Julstrom, 2001). When lists of edges encode spanning trees,
effective genetic operators can be based on union-find partitions of the target
graph’s vertices.

This paper describes these operators, which provide novel examples of the use of
this well known data structure. The following sections review the union-find
partition and its efficient implementation, describe the list-of-edges coding of
spanning trees in evolutionary algorithms, and describe crossover and mutation
operators for this coding that use union-find partitions.

2 The Partition Abstract Data Type

Given a set U of objects, a partition P of U is a set of disjoint subsets of U whose
union is equal to U. We say that the subsets are mutually exclusive and exhaustive;
every element of U belongs to exactly one subset in P. For example, if
U={0,1,2,...,9}, then P = {{0,6,7},{1,4},{2,5,8,9},{3}} is a partition of U.

The partition abstract data type contains only three operations: Create(P)
initializes the partition P to singletons; Find(P,x) identifies the subset in P to



@ P={{06,7},{1,4},{25809},{3}} (b) 6 1 8 3

/N1 /N

0 1L 2 3 45 6 7 8 9 c 7 4 5
©[Tel2lol2]2]81]6[1]5

N—©

Figure 2: (a) A partition P of the set U = {0,1,2,...,9}; (b) trees that represent
the partition’s subsets; (c) and an array that represents the trees. In the array, —1
marks roots.

which the element x belongs; and Union(P,x,y) modifies P by forming the union of
the subsets identified by x and y.

Any implementation of sets can be extended to represent a partition, but when the
elements of U can index an array, we have a concise implementation of the partition
ADT that elegantly supports the three operations. In it, a partition is represented
by a forest in which each tree represents one subset, and the entire forest is
represented in an array whose indices and elements are members of U. In
particular, each element’s entry in the array identifies its parent in the tree that
represents its subset. Marker values indicate roots. Figure 2 illustrates a partition,
the trees that represent its sets, and the array that represents the trees.

It is straightforward to implement the three operations in this representation.
Initialization sets all the array’s components to the root marker, representing a
forest of singletons. The element at a tree’s root names its subset; to identify the
subset that contains an element x, follow the parent indices from x to the root of its
tree and report that root. To form the union of two distinct subsets, make the root
of one a child of the root of the other. Figure 3 illustrates a Union() operation on
the partition of Figure 2.

Fach Union() operation makes two calls to Find (), which traverses a path in one
tree. In the worst case, the sequence of (n — 1) Union()s required to merge n
singletons into one set takes time that is ©(n?), but two changes to the operators’
implementations can improve this time significantly. Weight balancing modifies the
union operator so that it always makes the root of the smaller tree a child of the
root of the larger. This is easy to implement if the elements of U are non-negative
integers and roots are marked with —1 times the size of the subset rather than with

6 1 8 3 6 8
/N L /N ionpze) I /N
0 7 5 sla => 0o 7 T 5 T

2 4 2

Figure 3: The effect on the partition of the operation Union (P, 1,6); the subsets/trees
identified by 1 and 6 are merged by making 1 a child of 6.



a fixed marker value. Path compression extends Find(x) to retrace the path from x
to its root. On the second traversal, it redirects all the parent indexes to point
directly to the root, thus shortening paths and reducing the number of steps in
subsequent traversals.

Tarjan (1975) and more recently Harfst and Reingold (2000) have shown that, with
weight balancing and path compression, a sequence of m find() and union()
operations on a partition of n elements (m > n > 1) requires time that is

O(m a(m,n)), where a(m,n) is an inverse of Ackermann’s function A(z,y):

a(m,n) = min{i > 0 | A(i, [m/n]) > lgn}.

As Ackermann’s function grows quickly, this function grows slowly; in general, we
can regard it as never exceeding four. Thus the time of a sequence of find()s and
union()s is essentially linear in their number.

3 Spanning Trees in Evolutionary Algorithms

The algorithms of Prim and Kruskal require only polynomial time to identify
minimum spanning trees in weighted undirected graphs, but searching for optimal
spanning trees that satisfy constraints is often NP-hard. Examples of such problems
include the d-MSTP and RStP already mentioned as well as the minimum degree
spanning tree problem (Crescenzi, et al., 1999). the optimum communication
spanning tree problem (Hu, 1974; Johnson, Lenstra, and Rinooy Kan, 1978), the
minimum facility location problem (Guha and Khuller, 1998), the fixed-charge
transportation problem (Gottlieb and Eckert, 2000), and many others. Finding
good approximate solutions to problems such as these requires heuristic search of
the space of spanning trees on the target graph. Evolutionary algorithms are often
effective in such searches.

For evolutionary search, spanning trees can be encoded simply as lists of edges: the
entry (9,4) represents the edge connecting vertices 9 and 4, and a list of (n — 1)
such entries represents a spanning tree on a graph’s n vertices. Figure 4 shows a
spanning tree on twelve vertices and its representation as a list of edges.

In an evolutionary algorithm, the genetic operators of crossover and mutation act
on chromosomes that encode candidate solutions to generate novel chromosomes
and explore the search space. Crossover should replicate in the structures that
offspring represent features of the structures that their parents represent; when
chromosomes encode spanning trees, offspring should be composed of parental
edges. Mutation should make a small change in a chromosome that corresponds to
a small change in the structure the chromosome represents. The next two sections
describe operators for spanning trees encoded as lists of edges that satisfy these



{(62),(09), (210), (7.9), (38), (7.2),
(4,11), (4,5), (10,4), (9.4), (5.8) }

Figure 4: A spanning tree on twelve vertices and its representation as a list of edges.

requirements. Fach uses a union-find partition of the graph’s vertices as it builds an
offspring spanning tree.

4 Crossover

Without loss of generality, we can assume that the graph’s vertices are labeled with
the integers from 0 to (n — 1). Crossover uses a union-find partition of these
integers to keep track of connected vertices as it builds an offspring spanning tree
from two parents. This outline describes the algorithm:

1. Initialize the partition to singletons.

2. Sort the edges in each parent. Compare two edges by comparing their
lower-numbered vertices. If these match, compare their higher-numbered
vertices.

3. Scan the two sorted lists of edges. Copy identical edges into the offspring. In
the partition, merge components joined by each edge included in the offspring.
Copy all other edges into a separate list.

4. Select randomly from the remaining edges, including in the offspring those
that join previously unconnected components, until a spanning tree is
completed.

Figure 5 illustrates the crossover of two spanning trees. In problems such as the
degree-constrained minimum spanning tree problem, the inclusion of parental edges
may violate the problem’s constraints. In this case, the last step may require the
inclusion of non-parental edges; the partition indicates which edges may join the
spanning tree.

The sorting steps require time that is O(n log n), but they simplify what follows. In
step 4 in the worst case, the parent trees have no edges in common and every edge



Figure 5: Crossover of two parental spanning trees according to the union-find-based
crossover operator.

must be examined to build the offspring, so the number m of calls to find() and
union() is 2-2(n — 1) + (n — 1) = 5(n — 1). Thus the time for this step is
O(B(n—1),a(5(n—1),n)), and the sorting steps determine crossover’s time:
O(nlogn).

Some time can be saved by attaching to each chromosome a flag that indicates
whether or not its edges have been sorted; if a chromosome is a parent more than
once, the sorting step need not be repeated.

5 Mutation

Mutation deletes a random edge from a parent chromosome and replaces it with a
new random one that reconnects the tree. The modified list of edges is the
offspring. Mutation uses a union-find partition of the graph’s vertices to identify
the two components created when an edge is removed. It creates a new edge by
choosing one point from each component, according to this outline:

1. Initialize the partition to singletons.
2. Copy the parent chromosome into the offspring.
3. Select one edge at random in the offspring and remove it.

4. Scan the remaining edges. Use the partition to identify the two components of
the resulting graph.

5. Scan the partition to list the vertices in each component.
6. Select one point at random from each component. Write this edge into the

offspring.

Figure 6 illustrates the union-find-based mutation operator.



Figure 6: Mutation of a spanning tree. An edge is chosen at random, removed, and
replaced with another edge that reconnects the tree.

Mutation calls £ind() twice and union() once for each of (n — 1) edges, then
find() n times to identify the two components that must be joined, so

m = 3(n — 1) + n = 4n — 6. Thus the time of mutation is O(4n — 6, a(4n — 6,n)),
just more than linear.

6 Conclusion

While CS students usually encounter the union-find partition in the context of
Kruskal’s algorithm for minimum spanning trees, it can also be used in efficient
implementations of other algorithms that manipulate spanning trees. This paper
has presented two such: a crossover operator and a mutation operator for spanning
trees encoded as lists of edges in evolutionary algorithms that search spaces of
spanning trees. This paper has summarized the union-find partition and its
operations, introduced a coding of spanning tree as lists of edges for evolutionary
search, and described efficient implementations of a crossover and a mutation
operator for this coding. The operators use union-find partitions of integers that
label vertices. They should provide effective search for the computationally hard
problems that evolutionary algorithms address.

References

Thomas Béck, David B. Fogel, and Zbigniew Michalewicz (Eds.). (2000).
FEvolutionary Computation 1: Basic Algorithms and Operators. Bristol and
Philadelphia: Institute of Physics Publishing.

P. Crescenzi, V. Kann, R. Silvestri, and L. Trevisan (1999). Structure in
approximation classes. SIAM Journal on Computing, 28, 1759-1782.



J. Gottlieb and C. Eckert (2000). A comparison of two representations for the
fixed charge transportation problem. In Kalyanmoy Deb, Giinther Rodolph,
Xin Yao, and Hans-Paul Schwefel (Eds.), Parallel Problem Solving from
Nature — PPSN VI, 330-335. Berlin: Springer-Verlag.

S. Guha and S. Khuller (1998). Greedy strikes back: Improved facility location
algorithms. In Proceedings of the 9th Annual ACM-SIAM Symposium on
Discrete Algorithms, 649-657. ACM-SIAM.

Gregory C. Harfst and Edward M. Reingold (2000). A potential-based amortized
analysis of the union-find data structure. SIGACT NEWS, 31(3), 86-95.

T. C. Hu (1974). Optimum communication spanning trees. SIAM Journal of
Applied Mathematics, 30, 188-195.

D. S. Johnson, J. K. Lenstra, and A. H. G. Rinooy Kan (1978). The complexity of
the network design problem. Networks, 8, 279-285.

Bryant A. Julstrom (2001). Encoding rectilinear Steiner trees as lists of edges. In
Proceedings of the 2001 ACM Symposium on Applied Computing. ACM Press,
2001. March 11-14, Las Vegas, Nevada.

J. B. Kruskal (1956). On the shortest spanning subtree of a graph and the
traveling salesman problem. Proceedings of the American Mathematics
Society, T(1), 48-50.

R. C. Prim (1957). Shortest connection networks and some generalizations. Bell
System Technical Journal, 36, 1389-1401.

Gunther R. Raidl (2000). An efficient evolutionary algorithm for the
degree-constrained minimum spanning tree problem. In Proceedings of the
2000 Congress on Evolutionary Computation, 104-111. Piscataway, NJ: IEEE
Press.

R. E. Tarjan (1975). Efficiency of a good but not linear set union algorithm.
Journal of the ACM, 22, 215-225.



