
A Web-Based Evolutionary Algorithm Demonstration
using the Traveling Salesman Problem

Richard E. Mowe
 Department of Statistics

St. Cloud State University
 mowe@stcloudstate.edu

Bryant A. Julstrom

 Department of Computer Science
St. Cloud State University

julstrom@eeyore.stcloudstate.edu

Abstract

An evolutionary algorithm applies operators inspired by biological selection and
reproduction to search large solution spaces. In the well-known traveling salesman
problem (TSP), we are given a collection of cities and the distances between them, and
we seek the shortest tour that visits each city exactly once and returns again to the start
city. In an earlier presentation to this symposium, we presented a program written in
Visual Basic that demonstrated an example of a genetic algorithm—one flavor of EA—
for the TSP. The present project implements the genetic algorithm in Java. The current
implementation is more flexible than the old, and can be made available via the World
Wide Web to any computer with a Java 2-enabled browser.

mailto:mowe@stcloudstate.edu
mailto:julstrom@eeyore.stcloudstate.edu

1. Introduction

An evolutionary algorithm (EA) applies operators inspired by biological selection and
reproduction to search large solution spaces. In an EA, data structures, usually strings,
represent candidate solutions to the target problem. The algorithm maintains a population
of these structures, which are called chromosomes. Each chromosome has a numerical
fitness that indicates the quality of the solution it represents.

The algorithm selects chromosomes from its population to survive or reproduce;
chromosomes of higher fitness—that is, that represent better solutions—are more likely
to be selected. It applies operators inspired by genetic recombination and mutation to
generate new chromosomes that represent new candidate solutions. Crossover combines
the genetic material of two parents, while mutation randomly modifies a single parent
chromosome. After enough offspring have been generated, they replace some or all of
their parents, and the process continues. As generations of chromosomes succeed each
other, the solutions that they represent improve. The algorithm halts after a preset number
of generations or when it identifies a solution of adequate quality.

In the well-known Traveling Salesman Problem (TSP), we are given a collection of n
cities and the distances between each pair of them, and we seek a tour that visits each city
exactly once and returns to the start city in the shortest possible distance. Formally, the
TSP seeks a Hamiltonian tour of minimum total weight in a complete weighted graph on
n vertices. Though simple to state, the TSP is computationally difficult; it is a standard
example of an NP-hard problem (Garey and Johnson, 1979, pp.56-60). Thus it is unlikely
that any polynomial-time algorithm exists for its exact solution, and we turn to heuristics.
Among those heuristics are evolutionary algorithms, which have regularly been applied
to the TSP.

Evolutionary algorithms come in several flavors, depending on how chromosomes
encode candidate solutions, whether chromosomes are selected to survive or to
reproduce, the operators that generate offspring from parents, and the problems to which
they are usually applied. The kind of EA we exhibit here—the genetic algorithm (GA)—
is characterized by chromosomes that are strings of symbols, selection that chooses
chromosomes to be parents in reproduction, crossover and mutation operators that
exchange and modify symbols in parent chromosomes, and application to problems of
function optimization and combinatorial optimization. The TSP is an example of the
latter; it seeks an optimal ordering of its cities.

In an earlier paper (Julstrom and Mowe, 1996, pp. 330-337), we described a Visual Basic
program that demonstrated a genetic algorithm for the traveling salesman problem. The
present project implements the demonstration in Java. The new implementation is
platform-independent, more flexible than the old, and can be made available through the
World Wide Web to any computer with a Java 2-enabled browser.

The following sections of the paper describe: the details of the genetic algorithm that the
demonstration implements; the earlier Visual Basic program; the Java GA program;
implementation of the crossover and mutation operators; the operation of the program;
and its incarnation as an application and as an applet.

2. The Genetic Algorithm

Though some of the first researchers to write genetic algorithms for the traveling
salesman problem commented on the dearth of evolutionary interest in combinatorial
problems like the TSP (Greffenstette, et al., 1985), subsequent investigations have more
than filled this gap. Many researchers have written GAs for the TSP, and these algorithms
have used a wide variety of program structures, codings of candidate tours, crossover and
mutation operators, and hybridization with other heuristics. Michalewicz (1996, Ch.10)
provides a good overview of these techniques.

Since it is our purpose to present a demonstration of evolutionary computation via the
TSP rather than to construct a state-of-the-art GA for the problem, the design choices our
algorithm implements are conventional and conservative. First, the GA's chromosomes
represent candidate tours in the obvious way: as permutations of the cities. A
chromosome's tour visits the cities in listed order and closes the tour by returning to the
first city. Its fitness is the length of this tour.

Second, the program's structure is straightforward. After initializing its population with
random tours, it runs through a fixed number of generations. In each generation, it builds
a population of offspring by applying either crossover to two parents or mutation to one.
Parents are selected by choosing two chromosomes from the population at random, then
selecting the one that represents the shorter tour, a mechanism called a 2-tournament. The
algorithm also preserves the one best chromosome from the current generation into the
next; this is called 1-elitism. Figure 1 summarizes the algorithm's structure.

The crossover operator combines two parent tours to build a single offspring tour, and it
uses the inter-city distances so as to favor the construction of shorter tours. It chooses a
starting city at random, then repeatedly extends the tour to the nearest city that is adjacent
to the current one in either parent. If the tour already visits all those cities, the operator
appends the nearest unvisited city. Julstrom (1995) called this operator very greedy
crossover; it extends earlier greedy crossovers for TSP tours such as those by
Greffenstette, et al. (1985) and Jog, Suh, and van Gucht (1989).

The mutation operator reverses a random segment of its one parent tour, thus reversing
the order in which the cities in the segment are visited. Every new chromosome is
generated by either crossover or mutation, never by both; the choice is made for each new
chromosome probabilistically.

initialize the population with random tours;
for G generations
{
copy the best chromosome into the next generation;
while the next generation is not full
{
choose an operator: crossover or mutation;
if crossover
{
select two parents in 2-tournaments;
apply crossover to generate an offspring
chromosome;
}
else // mutation
{
select one parent in a 2-tournament;
mutate it to generate an offspring;
}
evaluate the offspring;
insert the offspring into the next generation;
}
offspring replace parents;
}

Figure 1. A sketch of the genetic algorithm for the traveling salesman problem that the
demonstration program implements. Evaluating an offspring chromosome means finding
the length of the tour that it represents.

3. Visual Basic Prototype

The earlier implementation of this algorithm in Visual Basic featured a graphic user
interface (GUI) that displayed tours of the current generation on a 2-dimensional panel.
The user could see the first, last, next, previous, and best tours of the current generation
and an optimal tour, if one was known. The user could also use buttons to set the length
of the GA's run.

The program was valuable as a prototype, but it was limited by its implementation in
Visual Basic. First, the program can run only on a computer that runs the Visual Basic
application. Second, it runs only on PCs, since Visual Basic is not a cross-platform
application. Finally, Visual Basic is object-based rather than object-oriented, which limits
the range of data structures available in any program.

The present project uses the Java programming language to implement the genetic
algorithm. Java is cross-platform, web-enabled, and provides an implementation that uses
rich object-oriented data structures. Further, Java is free and readily available.

4. The Java Application and Applet

This section describes the implementation of the algorithm in Java, beginning with the
objects it manipulates and proceeding to its user interface and operation.

Objects

The application manipulates objects in three categories: cities, a graphical user interface
(GUI), and the genetic algorithm. The city objects describe the target TSP instance:
XYCities is an array of point objects, each of which specifies the x- and y-
coordinates of one city. Distance is a two-dimensional array of integers; it holds the
rounded Euclidean distances between each pair of cities.

The MapPanel and GA objects control the graphical user interface. MapPanel is a
canvas on which are displayed dots that represent the cities and lines that represent links
in a tour of the cities. The GA objects control the MapPanel object as well as several
buttons and a text area that displays information about generations and tour lengths.

The GA objects are the most complex. An evolutionary algorithm’s most important data
structure is the population it maintains of chromosomes that encode candidate solutions
to its target problem. Thus, the heart of the application is a population object. The
population is an array of chromosome objects, each of which represents a candidate
tour. The encoding of tours is straightforward: Integers label the cities of the target TSP
instance, and a permutation of those integers represents the tour that visits the cities in the
listed order and returns to the start city. The tour’s total length is its fitness, which the GA
seeks to minimize. A chromosome object, then, consists of such an array and an integer
to hold its fitness.

The Model object contains an array of two population objects. One of these
represents the current generation; the program repeatedly selects parent chromosomes
and applies either crossover or mutation to them to build offspring chromosomes, which
it places in the Model object’s second population object. Associated with the Model
object are functions that implement the 2-tournament selection scheme and the two
genetic operators, described below.

The Interface

The graphical user interface divides the screen into four areas: display buttons, text
display, GA buttons, and a tour map. The display buttons specify tours to display from
the GA’s current generation. The First, Next, Last, and Best buttons allow the user to step
through and survey those tours. If an optimal tour for the target TSP instance is known,
the Ideal button tells the program to plot it.

The text area displays information about the chromosome whose tour is currently
displayed. It shows the number of the chromosome in the current generation and the
length of its tour. The text area also shows the probability p that crossover will generate
any one new chromosome; the probability that the program will apply mutation is then (1
– p).

The user sets the probability of crossover with the P.Crossover button. The 1 Gen. And X
Gen. buttons allow the user to specify the number of generations through which the GA
will run. Figure 2 shows an instance of the GUI.

Program Operation

The program begins by initializing the city, GUI, and GA objects. It initializes one of the
Model object’s two populations with random permutations of the city numbers, thus
with representations of random tours on the cities, and its evaluates each by finding the
length of its tour. The length of the population’s shortest tour is stored in its
Population object.

To build each subsequent generation (in the other of the Model’s Population
objects), the program first identifies and copies into the next generation the best
chromosome, representing the shortest tour, in the current generation. For the remaining
chromosomes in the next generation, the program chooses crossover or mutation
according to the probability of crossover that P.Crossover specifies, selects one or two
parents via 2-tournament selection, and applies the selected operator to the parent or
parents. The program consults the Distance object to find the length of the tour each
offspring chromosome represents; this value is its fitness. When the population of
offspring is complete, it replaces its parents, and the process continues through a number
of generations specified on the interface.

5. Crossover and Mutation

The interaction between an evolutionary algorithm’s coding of candidate solutions and
the operators that manipulate that coding is largely responsible for the algorithm’s
success or failure. The operators the TSP demonstration implements are not the most
powerful known, but they do provide good performance on TSP instances of moderate
size.

The crossover operator combines two parent chromosomes (that is, tours) to produce one
offspring. It chooses a start city for the offspring at random; this city is labeled
current. It identifies the cities in the parent chromosomes that are adjacent to the
current one, and extends the tour by appending the city nearest to the current one that is
found in both parents. If there is no such city, it appends the closest city found in either
parent. If all the cities adjacent to the current one in the parents have already been
included in the offspring tour, the crossover operator appends the nearest city not yet

listed. When the next city has been identified and appended, it becomes current, and
the process continues until the tour is complete.

The mutation operator reverses a random segment within its one parent chromosome.
That is, it generates two distinct random positions within the parent, and reverses the
segment of the permutation between them. For example, the chromosome
(9 4 3 7 0 1 2 5 8 6) might become (9 4 3 5 2 1 0 7 8 6). The effect is to reverse the order
in which the tour visits some of the cities; it removes two edges from the tour and
replaces them with two others.

6. Demonstration

Figures 2, 3, and 4 illustrate a typical run of the GA demonstration application. The TSP
instance it addresses contains 30 cities, and is a standard, if small, example in the GA
literature (Oliver, Smith, and Holland, 1987). Its shortest tour length is known to be 420.

Figure 2 shows an optimal tour on the 30 cities. Figure 3 shows the best tour in the GA’s
initial population of random tours. Figure 4 illustrates the GA’s progress after 5,000

generations; note the improvement in the population’s the best tour. For this run, the
GA’s population size was set to 50, and the probability that crossover generated any one
offspring chromosome was set to 0.7.

7. Application Versus Applet

This program has been implemented as both an application and an applet. In an
application, the programmer is responsible for creating an application object and
configuring an environment in which the application runs. In an applet, the applet object
is created and configured by a browser or the Java component AppletViewer, and HTML
code is written to invoke the applet. Running the HTML code invokes the applet.

The differences between the application and applet code are minimal. One difference,
however, is significant. Due to security constraints, Java file input and output are
restricted in applets. The original application acquired city coordinates by reading them
from a file. In an applet, this is not possible. Thus, the web-capable demonstration
includes arrays of the 30 cities’ x- and y- coordinates, from which it builds the array of
point objects.

To run the applet, direct your browser to
http://intrepid.mcs.stcloudstate.edu/ga/default.htm. Since the application and applet use
Java 2 Swing components, a Java 2-compliant browser is required. Netscape 6 works.
Internet Explorer does not.

The code is available via ftp://intrepid.mcs.stcloudstate.edu/ga. Download all the files in
the directory. Compile the *.java files. The application is run from
XYCitiesTest. The applet is run from XYCitiesApplet.html.

8. Conclusion

Active demonstrations contribute powerfully to any exposition or explanation. This paper
has described a web-based demonstration of a simple genetic algorithm for the well-
known traveling salesman problem. The GA encodes candidate tours as permutations of
integers that label cities, selects chromosomes to be parents in 2-tournaments, applies
either a greedy crossover or mutation by reversal of a random subtour to generate
offspring chromosomes, and is generational with 1-elitism.

The demonstration is implemented as a Java applet, and so is available to anyone with a
Java 2-capable browser. It illustrates its progress as it runs the genetic algorithm on a
small TSP instance, and the user can set the demonstration’s parameters and examine
their effect on the GA’s progress.

Figure 2. The GUI of the GA demonstration application. The tour shown is known to be
optimal on its 30 cities; it has length 420.

Figure 3. The GA demonstration application’s interface at the beginning of a run. It
shows the best tour in the initial population of random tours.

Figure 4. The GA demonstration application’s interface after 5,000 generations. Note the
improvement in the population’s best tour. For this run, the population size was 50 and
the probability of crossover, shown in the interface, was 0.7.

References

M.R.Garey and D.S.Johnson (1979). Computers and Intractability: A Guide to the
Theory of NP-Completeness. New York: W.H.Freeman and Company.

J.Greffenstette, R.Gopal, B.Rosmaita, and D.Van Gucht (1985). Genetic algorithms for
the Traveling Salesman Problem. In Proceedings of the First International Conference on
Genetic Algorithms and their Applications (ICGA’85) (J.J.Greffenstette, Ed.). Hillsdale,
NJ: Lawrence Erlbaum Associates, pp.160-165.

P.Jog, J.Y.Suh, and D.van Gucht (1989). The effects of population size, heuristic
crossover, and local improvement on a genetic algorithm for the traveling salesman
problem. In Proceedings of the Third International Conference on Genetic Algorithms
(ICGA’89) (J.D.Schaffer, Ed.). San Mateo, CA: Morgan Kaufmann, pp.110-115.

B.A.Julstrom (1995). Very greedy crossover in a genetic algorithm for the traveling
salesman problem. In Applied Computing 1995: Proceedings of the 1995 ACM
Symposium on Applied Computing (SAC'95) (K. M. George, Janice H. Carroll, Ed
Deaton, Dave Oppenheim, and Jim Hightower, Eds.). New York: ACM Press, pp.324-
328.

B.A.Julstrom and R.E.Mowe (1996). A Genetic Algorithm That Illustrates Its Progress on
the Traveling Salesman Problem. In Proceedings of the 29th Annual Small College
Computing Symposium. St. Cloud, MN: SCCS, pp 330-337.

Z.Michalewicz (1996). Genetic Algorithms + Data Structures = Evolution Programs
(Third edition). Berlin: Springer-Verlag.

I.M.Oliver, D.J.Smith, and J.R.C.Holland (1987). A study of permutation operators on
the Traveling Salesman Problem. In Proceedings of the Second International Conference
on Genetic Algorithms (ICGA’87) (J.J.Greffenstette, Ed.). Hillsdale, NJ: Lawrence
Erlbaum Associates, pp.224-230.

