
A Graphical 3-SAT Program for Research and Instruction

Thomas E. O’Neil
Computer Science Department

University of North Dakota
oneil@cs.und.edu

Abstract

This paper describes a program that provides a graphical user interface for experimenting
with the satisfiability problem on 3-CNF Boolean expressions. The program contains a
random expression generator and provides support for heuristic-guided solution guessing
with backtracking. The graphical interface displays the status of all variables and clauses
in the expression with color highlights that indicate their current status as the expression
is processed. Counts of the positive and negative occurrences of unassigned variables are
displayed to aid the user in selecting and setting the truth value of the next variable.
Expression simplification and backtracking are automatic. The program keeps track of
the number of computational steps required to find a solution or determine that none
exists.

The graphical 3-SAT program is equally valuable for research and instruction. Student
users can quickly gain an understanding of the satisfiability problem and come to
appreciate both its simplicity and its inherent complexity. The program also illustrates
the techniques implemented by the fastest known deterministic algorithms for
satisfiability, and it is sufficiently robust to provide a testbed for satisfiability research.

Introduction

3-SAT is the problem of determining the satisfiability of a Boolean expression where the
expression is in conjunctive normal form with three literals per clause. A Boolean
expression is satisfiable if and only if its value is true for some assignment of values to its
variables. The problem of determining whether an arbitrary Boolean expression is
satisfiable is a well-known NP-complete problem. The satisfiability problem is
commonly presented in undergraduate-level courses on algorithms and complexity as an
example of a problem that is computationally intractable. The problem seems simple
enough for small expressions, but as the number of variables becomes large, the running
time explodes exponentially.

The fastest deterministic algorithms for 3-SAT can be applied to expressions with a few
hundred variables. The algorithms with the best running times are variations of heuristic-
guided solution guessing with backtracking. Since the heuristics play a critical role in the
efficiency of the search, it is useful for researchers to have an interactive graphical tool
for empirical testing of sample expressions where various heuristics can be applied by
hand. This paper describes such a tool. The program presents a graphical display of a
randomly generated expression and allows the user to search for a satisfying truth
assignment. Counts of the positive and negative occurrences of the remaining variables
are displayed to aid the user in selecting and setting the truth value of the next variable.
Expression simplification and backtracking are automatic. The program keeps track of
the number of computational steps required to find a solution or determine that none
exists.

The graphical 3-SAT program is equally valuable for research as for instruction. It can
be presented as a game where the goal is to determine the satisfiability of an expression
in as few steps as possible. In running the program, students can quickly gain an
understanding of the satisfiability problem and come to appreciate both its simplicity and
its inherent complexity. The program provides a vehicle for stimulating interest in
theoretical computer science and for bringing research on a classical problem in
computing to the classroom.

The Satisfiability Problem

A Boolean variable is an object whose value is true or false. A Boolean expression
specifies the application of logical operations conjunction, disjunction, and negation to
Boolean variables or subexpressions. A Boolean expression is satisfiable if and only if
its value is true for some assignment of values to its variables. The problem of
determining whether an arbitrary Boolean expression is satisfiable is an NP-complete
problem [1]. All known algorithms for problems in this class take exponential time in the
worst case, and it remains unknown whether polynomial-time algorithms exist.

An arbitrary Boolean expression can be transformed to an equivalent expression in
conjunctive normal form (CNF). A CNF expression is a conjunction of clauses. Each
clause is a disjunction of literals, and each literal is a variable or a negated variable.

When each clause is restricted to contain no more than 3 literals, the expression is said to
be 3-CNF. The satisfiability problem for 3-CNF expressions is known as the 3-SAT
problem.

If the discipline of computer science is old enough to have classical problems,
satisfiability has to be placed in that category. Boolean expressions are simple logical
formulas, but they are sufficiently powerful to provide a model for all of computation,
since every computer program and computation can be represented as a Boolean
expression. As computer programmers, we write code for various applications and test it
by assigning specific values to input variables, running the code, and analyzing the
output. In testing we repeatedly perform experiments that answer the question “what
output will I get from this specific set of inputs?” Satisfiability raises the opposite
question – “what inputs are required to get this specific output?” It has many immediate
practical applications. In the design of life-critical systems, for example, one approach to
establishing the reliability of a system is to identify unacceptable outputs and then to
prove that no set of inputs will produce the unwanted outputs. Thus satisfiability is a
fundamental problem in both theoretical and applied computing, and it is very
appropriate to present it to undergraduates in courses on algorithms or theoretical
computer science. The program described here provides an excellent tool for introducing
the topic to students.

The Davis-Putnam Procedure

A number of deterministic algorithms for the satisfiability problem have been studied
over the past four decades. Solution-guessing with backtracking is perhaps the oldest
algorithm, and with appropriate heuristics and optimization, it remains the fastest.
Algorithms based on a backtracking search are referred to in research literature as simple
Davis-Putnam (DP) procedures [3]. Figure 1 contains a common description of the DP

Procedure DP

Given a set of clauses E defined over a set of variables V:
- If E is empty, return “satisfiable”
- If E contains an empty clause, return “unsatisfiable”
- Unit Clause Rule: If E contains a unit clause C, assign to the variable

mentioned the truth value which satisfies C, and return the result of
calling DP on the simplified expression.

- Branching Rule: Select from V a variable v that has not been assigned a
truth value. Assign it a value and call DP on the simplified expression.
If this call returns “satisfiable”, then return “satisfiable”. Otherwise, set
v to the opposite truth value and return the result of calling DP on the re-
simplified expression.

Figure 1: The basic Davis-Putnam procedure.

algorithm (from [5]). The expression is a conjunction of clauses, and each clause initially
has three literals. With each assignment of a variable, the expression is simplified by
removing the clauses that are satisfied by the assignment and by removing from the
remaining clauses the literals that contradict the assignment. If a clause becomes empty
after repeated simplifications, it is unsatisfied. In that case backtracking will be applied
to try a different assignment. If a clause in the simplified expression contains only one
literal, the Unit Clause Rule is applied to satisfy that clause. Repeated application of the
Unit Clause Rule is called unit propagation.

Various heuristics can be used when the Branching Rule is applied to select the next
variable and truth value to be assigned. As with any backtracking search, it is better to
exploit constraints as early as possible to reduce the size of the search. In the context of a
satisfiability search, the goal is to satisfy as many clauses as possible and to produce as
many unit clauses as possible with each step. Thus it makes sense to choose the variable
that occurs most frequently among the remaining clauses. Also, if there are more positive
occurrences of a variable than negative occurrences, it makes sense to assign the variable
true before false. Frequency of occurrence in 2-literal clauses is another factor to
consider. When a variable in a 2-literal clause is assigned, the clause will either be
satisfied or it will become a 1-literal clause, and unit propagation automatically processes
1-literal clauses. So, to take full advantage of unit propagation, it is beneficial to create
as many 1-literal clauses as possible.

The Pure Literal Rule is another common heuristic. A literal is pure if all occurrences of
it in the expression have the same polarity (all positive or all negative). In that case, there
is no need to try both truth values of the associated variable – just choose the value that
will satisfy all the literals. It may also be beneficial to look for literals that occur only
once (singletons) or twice (doubletons) in the expression. If a literal x occurs in 6 clauses
and the literal ¬x occurs in only one, then the literal x is “almost pure,” and it makes

Number of Variables Number of Clauses Average Branching Steps
20 85 1
40 171 4
60 255 9
80 340 18
100 425 35
120 510 71
140 595 145
160 680 292
180 765 604
200 850 1238
220 935 2543
240 1020 5217
260 1105 10549
280 1190 21783
300 1275 44240

Figure 2: Benchmark data for DP algorithms.

sense to try x = true first. These heuristics are applied, for example, in Jon Freeman’s
POSIT algorithm [4].

Figure 2 contains some data from an empirical study undertaken by Crawford and Auton
[2]. They ran a highly optimized, heuristic-guided DP algorithm called TABLEAU on
batches of 10,000 randomly generated expressions. The number of variables n ranged
from 20 to 300. The table shows data for expressions where the number of clauses m is
4.25n. These expressions are in the critical region 4n < m < 5n where the probability that
the expression is satisfiable drops rapidly from nearly 100% to nearly 0%, where the
expressions are most difficult to solve, and where the running time for deterministic
algorithms is the highest. Since running times are highly machine-dependent, the table
gives only the average number of branching steps (applications of the Branching Rule)
required for each computation. Applications of the Unit Clause Rule are not counted,
since unit propagation can be accomplished in polynomial time. It is the Branching Rule
that induces exponential time complexity, and we see that the number of branches
approximately doubles with each increment of 20n. This data provides a benchmark for
empirical satisfiability testing.

The 3-SAT Backtracker

The 3-SAT Backtracker is a program that provides a graphical user interface for
experimenting with the DP algorithm on randomly generated 3-CNF Boolean
expressions. The program was developed using Java (JDK 1.3) and the Swing graphical
component library. The expression generator is a separate unit written in C. The
program has the following components, laid out as shown in Figure 3:

Main Menu -- contains items for creating expressions, setting the control mode,
and controlling heuristics.

Variable Panel -- contains lists of free, true, and false variables.
Expression Panel -- contains lists of 3-literal clauses, 2-literal clauses, 1-literal

clauses, and satisfied clauses.
Statistics Panel -- contains a table that shows the number of occurrences of each

literal in 3-literal and 2-literal clauses.
Control Panel -- contains control buttons and step counts.

The main menu contains options for creating expressions and for controlling the
processing mode and heuristics. The user is allowed to generate new expressions, to read
existing expressions from files, and to save expressions to files. To generate an
expression, an external C program is invoked, and the output from the C program is read
from a temporary file. The expression format is simple – the literals are just positive or
negative integers, and it is assumed that three consecutive literals represent a clause. The
user specifies the number of variables n and the number of clauses m, and the generator
produces a list of 3m literals, randomly selected from the range 1..n, and randomly
assigned a positive or negative polarity. The generator will not form two literals from the
same variable in any single clause, but it there is nothing to prevent it from generating
duplicate clauses.

The variable panel contains three scrollable lists that communicate the current truth
values of all the variables. The variable names are just positive integers displayed in
black if they are unassigned (free), blue if they are true, and red if they are false. There
are separate lists for free variables, for true variables, and for false variables, each with a
counter box below it to display the size of the list. The user makes an assignment by
selecting a variable from one of the lists and pressing a button on the control panel. The
variables are moved from one list to another as dictated by the assignment.

The expression panel contains four scrollable lists of clauses that communicate the
current status of the expression. There are separate lists for satisfied clauses and for
unsatisfied clauses with 3 literals, 2 literals, and 1 literal. As with the variable lists, each
clause list has a box below it displaying the size of the list. Clauses move from one box
to another as the user makes assignments. Literals within the clauses are highlighted to
indicate their status. In the list of satisfied clauses, literals that match the current
assignment are highlighted in yellow. In the other lists, literals that are inconsistent with
the current assignment are highlighted (lowlighted?) with gray.

The statistics panel contains a scrollable table that displays the number of occurrences of
each literal in 3-literal clauses and 2-literal clauses. It contains all the information needed
to implement the common heuristics used by DP algorithms. The user can activate or
deactivate the table. When the table is active, the occurrence counts are automatically
updated with each assignment.

The control panel contains the buttons required for the user to test an expression and a
display of the number of assignments made and the number of branching steps. There are

Main Menu

Control Panel

Statistics Panel Variable Panel Expression Panel

Occurrence Table

 Free True False 3-literal 3-literal 3-literal SatisfiedLiteral

 Vars Vars Vars Clauses Clauses Clauses Clauses

Step Counts

Figure 3: Panel layout for 3-SAT Backtracker.

three processing modes: manual, interactive backtracking, and automatic backtracking.
In manual mode, the user can select variables from the variable lists and assign them to
true, false, or free. The program updates the variable lists, clause lists, and statistics table
accordingly, but there is no automated support for backtracking. Unit propagation will
not happen automatically, but it can be initiated by pressing a button.

In the backtracking modes, the program employs a stack of variables to control the
sequence of assignments. With interactive backtracking, the user makes an assignment
for each branching step, but unit propagation and backtracking occur automatically. The
program terminates and declares the expression satisfiable when all clauses reach the
satisfied clause list. It terminates and declares the expression unsatisfiable when the
variable stack becomes empty. The statistics table can be activated to help the user make
decisions regarding which variable and truth value to try next at each branching step.

With automatic backtracking, the user simply presses the run button and waits until the
expression is declared satisfiable or unsatisfiable. Variables are automatically selected
for assignment throughout the process. If the statistics panel is inactive, the first variable
on the free list is selected for each branching step, and it is assigned true first, followed
by false if necessary. If the statistics panel is active, heuristics are used in the selection of
a variable and initial truth value for each branching step. Two standard heuristics are
employed: 1) if the expression contains a pure literal, choose an assignment to satisfy it,
and 2) choose a variable that occurs most frequently among the remaining clauses.

Experimenting with the Backtracker

There are plenty of experiments to try with the 3-SAT Backtracker. For instructional
purposes, running the Backtracker in manual mode with small expressions provides an
excellent introduction to the satisfiability problem, and running it in manual mode with
large expressions instills in the user an understanding of the word “intractable”. For
research projects, the user can compare the step counts from running the program with
and without heuristics. Interactive backtracking can be used to try to match or improve
upon the benchmark performance data in Figure 2. After developing heuristics in
interactive or manual mode, the user can modify the Java code to automate the new
heuristics. Using this methodology, various sets of heuristics can be compared.

In summary, the 3-SAT Backtracker is a flexible tool for instruction and research. It
provides an extensible framework for experimentation with and gives immediate access
to one of the classical problems in computing.

References

1. Cook, S. (1971). The complexity of theorem-proving procedures. Proceedings of the
third ACM symposium on theory of computing, 151-158. ACM, New York.

2. Crawford, J., and L. Auton. (1996). Experimental results on the crossover point in
random 3-SAT. Artificial intelligence 81:31-57.

3. Davis, M., and H. Putnam. (1960). A computing procedure for quantification theory.
Journal of the Association for Computing Machinery 7:201-215.

4. Freeman, J. (1996). Hard random 3-SAT problems and the Davis-Putnam procedure.
Artificial intelligence 81:183-198.

5. Selman, B., D. Mitchell, and H. Levesque. (1996). Generating hard satisfiability
problems. Artificial intelligence 81:17-29.

