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Abstract: 
 
Minimum sum of diameters clustering can be solved by reduction to determination of the 
satisfiability of a 2- Conjunctive Normal Form or 2-SAT statement. Hansen provided an 
algorithm that solved O(nlogn) 2-SAT instances and ran with time complexity O(n3logn) 
on a graph of size n. Sarnath provided an improved dynamic digraph algorithm that 
solved O(m) 2-SAT instances on a graph with m edges and ran with time complexity 
O(n3). Algorithms were implemented to partition instances of a complete graph having 
n=50 to n=500 vertices where all the vertices are connected with each other. In tests of 
the two algorithms, the Sarnath algorithm consistently performed better to find the edges 
of largest length of two clusters such that the sum is minimized.  
 



1   Introduction: 
 
A general question facing researchers in many areas of inquiry is how to organize 
observed data into meaningful structures, that is, to develop taxonomies. Clustering of 
data helps to solve this problem by partitioning large sets of data into clusters of smaller 
sets of similar data. Clustering of data can be done in different ways. Most often the 
difference between a pair of entities is considered to partition the entire data set [1]. The 
maximum dissimilarity between any two entities within one cluster is called the Diameter 
of the cluster and the minimum dissimilarity between entities in one cluster with any 
other outside it is called the Split of the cluster. The idea of using Diameter and Split as a 
measure of clustering was suggested by Delattre and Hansen [2]. There are different 
algorithms that differ in how the distance between two clusters is computed. Average 
linkage clustering uses the average similarity of observations between two groups as the 
measure between the two groups. Complete linkage clustering uses the furthest pair of 
observations between two groups to determine the similarity of the two groups. Single 
linkage clustering, on the other hand, computes the similarity between two groups as the 
similarity of the closest pair of observations between the two groups. But it is well known 
that minimum diameter partitions suffer from the dissection effect. In which case, very 
similar entities may be assigned to different clusters [1, 2, 3]. But instead of minimizing 
the diameter of a cluster, if the sum of diameters of clusters is minimized, the dissection 
effect is much less damaging [1].  
 
That is why, where homogeneity of the clusters are desirable, partitioning the entities in 
clusters such that the sum of the diameters of the clusters are minimized is much more 
effective. Brucker showed that the problem of partition a set of entities in more than two 
clusters such that the sum of the diameters is minimized is NP-complete [4]. Hansen 
provided a O(n3logn) algorithm for the problem when a set of entities are partitioned into 
two clusters [1]. Sarnath provided another algorithm based on dynamic digraph 
connectivity that improves the time complexity of Hansen algorithm by a factor of 
O(logn). Both Hansen and Sarnath algorithm performs operation on graphs where the 
entities are represented by the vertices and the dissimilarity between any pair of entities 
are represented by the weight of the edge that connects the vertices representing the 
entities. In this paper, the performance of Hansen and Sarnath algorithm on a set of 
graphs of size 50 to 100 are presented where Sarnath algorithm consistently performed 
better. The rest of the paper is organized as follows: a description of the problem is given 
in section two. A generic procedure to solve the problem in which Hansen and Sarnath 
algorithm works is presented in section three. Hansen and Sarnath algorithm and their 
implementation is described in section four. In section five, the performance of these two 
algorithms on a set of graph is compared. Conclusions are drawn in section six.  
 
 
2   The Problem:  
 
A set of n entities and the dissimilarity between a pair of entities can be represented by a 
graph G=(V, E) with n vertices with the length of edges representing the dissimilarity 



between the vertices it connects. In a complete graph, dissimilarity between each pair of 
vertices is represented by the length of the edge connecting them. We want to partition 
the set of vertices into two clusters C0 and C1 such the diameter of cluster C0 is equal to 
some value d0 and the diameter of cluster C1 is equal to d1. By definition of diameter, 
there is no pair of vertex in C0 the connecting edge between them has length greater than 
d0 and there is no pair of vertices in C1 for which the connecting edge between them has 
length greater than d1. Without loss of generality it can be assumed that d0 >= d1. So, C0 
is the cluster with bigger diameter and C1 is the cluster with smaller diameter. Minimum 
sum of diameters clustering problem finds optimal d0 and d1 such that (d0+d1) is 
minimum for which there is a partition of the vertices in two clusters. Such a partition is 
called optimal.  
 
 
3   A Generic Algorithm: 
 
Before explaining the steps of  a generic algorithm to find the optimal diameters, let us 
formulate a relation between the diameters, length of edges and the vertices of the graph. 
Assume we have a graph with a set of vertices V={x1, x2, ...., xn} and a set of edges 
E={e1, e2, ..., em}. We want to partition the vertices in two clusters C0 and C1 such that 
the diameter of cluster C0 is some edge length d0 and the diameter of cluster C1 is some 
edge length d1. The length of some edge ‘eij’ between vertices i and j is denoted dij. Let’s 
associate a boolean variable xi to each vertex such that: 
 
 xi = 0 if xi is in C0 
 xi = 1 if xi is in C1  
 
For any d0, d1 pair, the partition needs to satisfy the following three invariants: 
 

1) If for some edge eij, dij>d0, i and j both cannot be in the same cluster. For the 
vertices i and j, we can assign the following boolean values:  xi=0, xj=1 or xi=1, 
xj=0. 

2) If for some edge eij, d0>=dij>d1, both i and j cannot be in cluster C1. Either xi=0, 
xj=0, or xi=0, xj=1 or xi=1, xj=0.  

3) If for some edge eij, d1>=dij, the vertices can both be in C0, or C1 or they can be in 
separate clusters.  

 
To hold the first invariant true, apply a boolean conjunct: (xi ∨  xj) to every edge eij, 
wherever dij>d0. Refer the conjunct as Type0 constraint. 
 
To hold the second invariant true, apply a boolean conjunct: (xi ∨  xj) ∧  (¬xi ∨  ¬xj) to 
every edge eij, wherever d0>=dij>d1. Refer the conjunct (¬xi ∨  ¬xj) as Type1 constraint. 
 
To hold the third invariant true, we need not to apply any constraint for edges eij, if dij<= 
d1. There is no restriction on which cluster i or j would belong.  
 
 



The following boolean table expresses this relationship:  
 

Table 1: Boolean Conjuncts for Diameter Restriction 
 

b 
 
c 

 
¬¬b 

 
¬¬c 

 
b v c 

 
¬¬b v ¬¬c 

 
( b v c ) ∧∧  (¬¬b v ¬¬c) 

0 0 1 1 0 1 0 

0 1 1 0 1 1 1 
1 0 0 1 1 1 1 

1 1 0 0 1 0 0 
 

 
Writing for each pair (xi, xj) of vertices the binary relation which is implied by the value 
of dij with respect to d0 and d1, we obtain a quadratic boolean equation (E) which is in the 
form of 2-Conjunctive Normal Form or 2CNF expression. From the definition of (E), it 
follows that the equation (E) is satisfiable or has a true assignment if there is a partition 
of vertices such that the diameter of the bigger cluster is d0 and the diameter of the 
smaller cluster is d1. If we can find all (d0, d1) pair of edges for which there is a partition 
of vertices into two clusters satisfying the invariants, we can find the optimal (d0, d1) pair 
in linear time.  
 
The previous results yield the following generic algorithm, which receives a connected, 
undirected graph G=(V, E) with a weight function w: E → R as parameter:   
 
Generic Algorithm (G, w)  
1 Identify all edge lengths that are possible candidates for d0 and d1 
2 For each candidate edge d0, identify the smallest value d1 such that there exists a 

partitioning of the graph into two clusters 
3 Find the smallest pair of (d0, d1) for which the sum of diameters (d0+d1) is 

minimum 
 
 
4   Algorithms of Hansen and Sarnath: 
 
The two algorithms to find minimum sum of diameters follows the structure of the 
generic algorithm. They each use similar process to identify the set of possible candidates 
for d0. They use different approach when it comes to search for smallest d1 for each d0 in 
step 2.  
 
It follows that the set of edges that will be the candidates for d0 can be found in the 
process of growing a maximum spanning tree. The only edges whose lengths are 
candidates for d0 are the edges that completed the first odd cycle in the spanning tree and 
the edges included in the spanning forest before the first odd cycle was encountered [1]. 
All candidates for d1 are lesser than or equal to the edge length that constitutes the first 
odd cycle [1].  



 
Assume, the edges are sorted in non-increasing order having lengths {dm,dm-

1,...dmin,....,d2,d1}. The first odd cycle is found in dmin in the process of growing a 
maximum spanning tree. The set of candidate d0 lies on the left of dmin value, dmin 
included. The set of d1 lies on the right of dmin, dmin included. Hansen performs a binary 
search on the set of d1 to find the smallest d1 for which the boolean expression (E) is true. 
Sarnath starts with the biggest d0 value and performs an incremental search on the set of 
d1 to find a satisfiable boolean expression (E) beginning with the smallest d1. In both 
algorithms, sum of all (d0, d1) pair is stored for each d0 in the set. The list is scanned to 
find the minimum sum of diameters. The (d0, d1) pair for which the sum is minimum is 
called optimal.  
 
 
Hansen Algorithm: 
 
Hansen algorithm as described in [1] operates in the following way. First, sort all the 
edges in non–increasing order and find the first odd cycle that occurs in growing the 
maximum spanning tree. Find the set of candidate d0 and d1 values. The edges that are 
equal to or bigger than dmin belongs to the set S0. The edges that are equal to or smaller 
than dmin belongs to the set S1. For each edge d0 in S0, proceed to a binary search on the 
ordered set of S1 to find a d1 value. For each (d0, d1) pair, scan the list of edges to 
construct a 2CNF expression (E) and check for the satisfiability of the 2CNF expression 
(E). If satisfiable, find next edge that is smaller than the current d1 from the set S1 by 
applying binary search, construct (E) and check satisfiability. If not, find next edge bigger 
than current d1 by applying binary search, construct (E) and check satisfiability. Store the 
smallest d1 for each d0 for which the constructed boolean expression is satisfiable. 
Perform these operations for every d0 in S0. The minimum sum (d0, d1) can be found by 
searching the list of (d0, d1) pair for which the boolean expression was found satisfiable.   
 
 
Finding dmin:  
 
The first odd cycle in the growing of a maximum spanning tree can be found in O(n2) 
time [1]. Apply Kruskal’s algorithm to grow maximum spanning tree. If the edge in 
question, forms an even cycle, the edge is ignored. If the edge forms an odd cycle, then 
we have found dmin.  
 
 
Checking satisfiability: 
 
Hansen uses the algorithm described by Aspvall to check satisfiability of the boolean 
expression constructed for some (d0, d1) pair [6]. Checking the consistency of quadratic 
boolean equation (E) defined on a set of n vertices can be done in polynomial time [1]. 
The algorithm adds a directed graph to represent a 2CNF expression referred as 
constraint graph [7]. The constraint graph is constructed as follows: For each vertex value 
i in the original graph, add two vertices i and ¬i where i and ¬i are complements of each 



other. For each constraint (u ∨  v), add edges ¬u → v and ¬v → u in the constraint graph. 
So, for each Type0 constraint, we add two edges that are directed from negated literals to 
non-negated ones. For each Type1 constraint, the algorithm adds two edges directed from 
non-negated literals to negated ones. The algorithm to check satisfiability of (E) relies 
upon identifying the strong components of the constraint graph. A 2CNF expression is 
satisfiable if and only if no vertex i is in the same strong component as its complement ¬i 
[6]. Strongly connected components of a directed graph G=(V, E) can be computed in 
linear time using two depth–first search (DFS); one on the graph itself, and the other one 
on the transpose of G, which is defined as GT  = (V, ET), where ET  = {(u, v) : (v, u) is in 
E} [8]. That is, ET  consists of the edges of G with their directions reversed.  
 
Hansen (G, w) 
1 Grow maximum spanning tree to find dmin which is the first odd cycle in growing 

the spanning tree 
2 Identify S0, the set of all candidate d0 edges and S1, the set of all candidate d1 

edges 
3 d1 ← nil 
4 for each d0 in S0 
5  d0 find a candidate d1 from S1 in binary search fashion 
6   construct a boolean expression (E) for d0 and d1 
7   Check satisfiability of the expression 
8   if satisfiable  
9    then search for a lower value of d1 
10   else  search for a higher value of d1 
11   store smallest d1 for each d0  
12 Choose (d0, d1) pair such that the sum of d0 and d1 is minimum 
 
 
Sarnath Algorithm: 
 
Sarnath algorithm uses properties from Dynamic Digraph Connectivity to solve 
Minimum Sum of Diameters Clustering. The algorithm differs from Hansen in two ways:  
 

1) Instead of carrying out a binary search to find d1, it is found from a sequential 
search.  

2) Instead of solving each 2CNF instance from scratch, it is done 
incrementally/decrementally for each new value of d0 and d1 [7]. 

 
The algorithm makes improvements on how the satisfiability of 2-SAT boolean 
expression is solved. The algorithms choose d0 from the edge with largest length from S0, 
and choose d1 from the edge with smallest length from S1. Each time a boolean 
expression (E) is found not satisfiable the algorithm chooses the next bigger edge from S1 
for d1 until a satisfiable expression is found. Each time the expression (E) is found true, 
the next smaller edge is selected from S0 for d0. But instead of constructing the constraint 
graph from scratch for each 2CNF expression and solving for satisfiablity, the constraint 
graph is updated dynamically based on the following change in 2CNF expression:  



 
1) Each time a bigger eij is chosen from S1 for d1 value, remove the Type1 constraint 

from eij. 
2) Each time a smaller d0 is chosen from S0 for d0 value, add Type0 constraint to the 

last edge considered for d0.  
 
For an initial graph of n vertices, the constraint graph will contain 2n vertices. The 
algorithm operates on a data structure which is a matrix of size (n x n) that represents the 
constraint graph. The algorithm maintains transitive closure of the constraint graph at all 
time and checks for cycles in the constraint graph to find satisfiability. So, for each 
change in 2CNF expression (E), the matrix is updated and satisfiability is checked by 
querying the matrix.  
 
 
5   Performance: 
 
 
Big- O Analysis: 
 
Hansen algorithm ranks the edges of the initial graph in decreasing order. For a complete 
graph, sorting the edges takes O(n2logn) time for a graph with n vertices and O(n2) edges. 
The construction of the maximum spanning tree from the initial graph takes O(n2) time. 
Hansen algorithm checks at most logn d1 instance and there can be at most n d0. So, in the 
worst case, the algorithm checks O(nlogn) pair of (d0, d1). The entire algorithm takes 
O(n2logn)+O(nlogn)*O(n2)=O(n3logn) time. This is the overall time complexity of 
Hansen algorithm.  
 
On the other hand, Sarnath algorithm pre-computes the matrix in O(n3) time [7]. It 
computes the most persistence path between all pair of vertices and considers all other 
vertices as intermediate vertices on the path. The calculation is analogous to Floyd-
Warshall’s all pair shortest path algorithm [8]. The data structure cleverly maintains the 
matrix so that every time the boolean expression is updated, the edges need to be deleted 
can be identified in constant time. Each time a edge is inserted, it however takes O(n2) 
time to update the matrix [7]. At every insertion, the algorithm calculates any new path 
between all pair of vertices that might have been created considering the new vertices 
connected between the new edge as intermediate vertices. The overall time complexity of 
Sarnath algorithm is O(n3).  
 
 
CPU Performance: 
  
The algorithms were implemented in C++. The programs were compiled using GNU g++ 
compiler on a Digital AlphaServer 1000A 4/266 running Digital UNIX v4.0D with 256 
MB of RAM. In comparing the performance of two programs, CPU cycle used by each 
program is counted. The CPU cycle used by Hansen algorithm is almost three times than 
what was used by Sarnath algorithm when tested on a complete graph with 30 vertices. 



The cycle used by Hansen algorithm was 2 ½ times when testing on a graph with 40 
vertices. Both algorithms run in polynomial time and the CPU cycle used increases very 
rapidly even for a very small graph.  
 

Table 2: CPU cycle used by Two Algorithms 
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Figure 1: Graph of CPU Performance 

 
 
 
 

Number Of Vertices Hansen’s Algorithm 
(In Millions) 

Sarnath’s Algorithm 
(In Millions) 

10 1 .08 
20 10 1.6 
30 30 7.5 
40 98 38 



6   Conclusion:  
 
Both Hansen and Sarnath algorithm runs in polynomial time. Even though, Sarnath 
algorithm improves Hansen algorithm by a factor of O(logn), the run time complexity of 
both the algorithms is a polynomial degree of three which makes it quite impossible to 
test them even on small graphs of size 100 on the machine where the algorithms were 
tested on. The time and space requirement of both the algorithms are quite high. The 
hidden constant factor of the big-O analysis for Hansen algorithm is higher than that of 
Sarnath due to the fact that it constructs constraint graph and finds satisfiability of the 
boolean expression every time a new (d0,  d1) pair is chosen. Whereas, Sarnath does this 
incrementally/decrementally and only operates on one single matrix of size (n x n). The 
resource limitation also prohibited testing on instances of large graphs. However, the 
algorithms were not tested against any heuristics and the performance of these two 
algorithms against any such heuristic is yet to be compared.  
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