
Codename OCT:
The Organic Chemistry Tutorial

Jeff Hauck
Division of Science and Mathematics

University of Minnesota, Morris
hauckjj@mrs.umn.edu

Scott Lewandowski
Division of Science and Mathematics

University of Minnesota, Morris
swl@mrs.umn.edu

Abstract:

The long-term goal of this project is the development of an interactive, computer-based
tutorial for beginning organic chemistry students to help develop their problem solving
skills in the area of retrosynthetic analysis. Retrosynthetic analysis refers to breaking
target molecules into sensible pieces so that their synthesis can be planned. Since no
such application is known to exist, this project fills an unmet need for organic chemistry
tutorials.

The main goal of our current work is to design and build an extensible, and web
deployable application that requires no installation for clients. To achieve the latter goal,
the application uses a four-tier architecture consisting of a MySQL database, Enterprise
JavaBeans (EJB’s), JavaServer Pages (JSP pages), and the client.

 Our design thus allows anyone with Internet access and a user account to practice
retrosynthetic analysis problems. Faculty can monitor students’ progress from a web
browser, and thereby adjust their teaching accordingly.

Project History

Origins

The Organic Chemistry Tutorial (OCT) project was originally conceived of in 1998. It
grew out of a faculty enrichment mentorship pairing between Scott Lewandowski from
Computer Science and Nancy Carpenter from Chemistry. The mentorship pairing
focused on issues related to developing and sustaining a successful research program
involving undergraduates. The OCT project was envisioned as an ongoing collaborative
and interdisciplinary research effort. The long-term goal of the project is the design and
development of an interactive, computer-based tutorial for beginning organic chemistry
students to help develop their problem solving skills, particularly in the area of
retrosynthetic analysis.

About Retrosynthetic Analysis

Retrosynthetic analysis is the process of breaking down complex target molecules into
sensible pieces so that their synthesis can be planned. In other words, it’s a kind of
molecular reverse engineering performed to determine what starting molecules (or
precursors) and reagents could be used to create (or synthesize) the desired target
molecule (see Figure 1).

The key to retrosynthetic analysis is to work the problem backwards. Unfortunately, this
seems to be a skill students have difficulty mastering, and while there are software
products available to assist professional chemists in performing retrosynthetic analyses,
there appear to be no tutorials designed to teach organic chemistry students the basic
concepts behind this process.

Development Efforts

Development work began in the fall of 1999. Matt Hardy, a Computer Science major
who was also pursuing a minor in Chemistry received funding through the Morris
Academic Partnership (MAP) program to work on the design and development of a Java-
based prototype tutorial system during the 1999-2000 academic year. The resulting
system served as a proof of concept and also a framework upon which further
development efforts could build.

Figure 1: simplified example of a retrosynthetic reaction

Matt expanded on the work of his MAP project during the 2000-2001 academic year.
These efforts, funded by the Undergraduate Research Opportunities Program (UROP) of
the University of Minnesota, focused on the development of an intelligent tutoring
system capable of adapting to different students’ educational requirements. While this
work did not result in a working system, it did lay the groundwork for much of our
current approach. Matt made significant contributions with respect to back-end system
design (including the use of a database for storing problem information) and also to the
design of the user interface.

Jeff Hauck joined the project in the fall of 2001. Since that time we have completely
redesigned the tutorial. Drawing on our previous experiences (both with the prototype
tutorial and also from Jeff’s summer internship) and taking advantage of recent
technological developments such as Enterprise JavaBeans (EJB’s) we moved to what we
refer to as a zero footprint design. Zero footprint meaning that a user of the system need
not install any software (beyond a web browser) on their computer in order to use our
tutorial. The remainder of this paper describes in further detail our zero footprint design
and the technologies that make it possible.

System Overview

The system is comprised of four tiers, the database tier, the application tier, the
presentation tier, and the client tier (see Figure 2). The database tier consists of a
MySQL database server. This server is used to store information about users, reactions,
and molecules. This tier is queried for information by the application running on the
application tier and then the information is presented to the user via the presentation tier.

A Java 2 Enterprise Edition (J2EE) server is designed to provide a container and a
container management system for applications that use the Java 2 Enterprise Edition
API’s. Our design makes use of these API’s with implementations of Enterprise
JavaBeans (EJB’s or beans) and JavaServer Pages (JSP pages). In our case, two different

Figure 2: description of the four-tier architecture of the system

J2EE servers define the presentation and application tiers: JBoss, the application server,
provides an EJB container, and Apache, the web server, provides a web container for JSP
pages.

JBoss is a free, open source application server that provides a J2EE container, or Java
runtime environment, for the Enterprise JavaBeans. The runtime environment consists of
a Java Virtual Machine (JVM), the J2EE classes, and supporting files. The JBoss
runtime environment is responsible for creating bean instances ahead of time and placing
them in a bean object pool for the client to use[3]. By using an object pool, the container
does not continue to create new instances of objects and then garbage collect them
later[1]. JBoss handles the management and security of transactions occurring in the
system. These transactions include remote method invocations (Java RMI) from the
presentation tier, and database tier queries using Java Database Connectivity (JDBC).
The packaged beans are placed or deployed in the container, where JBoss will un-
package them, and run them in the JBoss runtime environment.

Apache is a free, open source web server that provides a J2EE container to manage
servlets and JSP pages. The web container also provides transaction management. For
this project, we are running an installation of the Apache web server included with JBoss.
The JSP pages deployed in the presentation tier are responsible for the display of static
and dynamic web page content to the user in the form of problems.

The final tier consists of a client machine anywhere in the world with an Internet or
Intranet connection and a web browser. As Figure 2 illustrates, a java application could
also remotely invoke bean methods directly from the client machine. The remote
invocations would be identical to those in contained in the JSP pages in the presentation
tier. However, this approach defeats the goal of having a zero footprint system by
requiring installation to each remote client machine.

The statistics that are collected when organic chemistry students submit solutions would
be skewed if non-students were allowed to use the system. An example of such a statistic
would be the number of times a problem was answered incorrectly, or the average skill
level of the class. User names and passwords ensure the integrity of the data stored in the
database tier.

All database transactions will take place using a single MySQL account only intended for
the OCT tutorial, so faculty will not need individual accounts on the database server.
Instead, special privileges will be assigned to organic chemistry faculty. These privileges
will include the ability to access information such as student progress, or the ability to
add and remove molecules or reactions from the system. If a user does not have the right
privileges, the link to the JSP page containing the administrative tools will not be
displayed.

The system, as designed, can be scaled in a number of ways to accommodate more users.
In this particular case, we have MySQL, JBoss, and Apache running on the same
machine. Each server could be installed on different physical machines to compensate

for speed degradation caused by too many users. Expensive remote method invocations
between the web server and the application server are used regardless of the number of
physical machines because they each use a different JVM. The efficiency of the JDBC
connections between the application server and the database will also remain about the
same. The additional cost of making transactions from a larger distance will depend
upon the networking bandwidth between the separate machines. The organic chemistry
tutorial system could also be “mirrored" or installed on a second set of machines, in
which case students could be routed to the alternate system to balance the load.

MySQL

MySQL is an open source relational database server. The MySQL database used in our
tutorial contains six tables or relations represented in the schema and Entity-Relationship
(E-R) diagram shown in Figure 3.

user (user_pk, user_name, passwd, privileges, skill_level);
answer (user_pk, reaction_pk, time_spent, isCorrect, reason);
molecule (molecule_pk, iupac_name, common_name, formula, functional_groups);
reagent_set (set_pk, reagent_1, reagent_2);
functional_groups (group_pk, group_name);
reaction (reaction_pk, reactant, reagent_set, target, difficulty);

Figure 3: schema and Entity-Relationship (E-R) diagram for the database

The relationship sets in Figure 3 labeled contain do not actually exits in the database,
but instead represent primary key – foreign key mappings between the different entity
sets in the table. Leaving them out creates no repetition in the remaining tables and
allows more efficient retrieval of information. For example, only two tables need to be
joined instead of three in order to retrieve information on molecules and the functional
groups they contain.

The user table contains the name and password of each user. The information provided
by the user at login is checked against this table. Each user has a corresponding privilege
level, which is used for the suppression of certain information for non-authorized users.
Rows containing the user names of students have an integer value in the skill_level
column. As the student correctly answers problems of increasing difficulty, their skill
level increases. This column contains a null value for faculty.

The answer table records the interaction between the student and the tutorial. A row in
this table will contain a reference to the reaction the problem was modeled after. In
addition, the row stores a reference to the user, and the time spent on the problem. The
isCorrect column is used to record whether or not the solution proposed by the student
was correct, and a reason the student may have answered incorrectly is also stored.
Queries to the answer table will be the main source of information for the intelligent
tutoring agent (see Future Work).

The reaction table relates molecules together to form recipes for specific retrosynthetic
reactions from which problems can be made. The reactant and target columns are
foreign keys to rows in the molecule table. The reagent_set is a foreign key for a
row in the reagent_set table. Each row in the reagent_set table contains a pair of
foreign keys for rows in the molecule table. It must be noted that molecules can
generally be synthesized in more than one way. There may be many reactions in the
table with the same target molecule, so proposed solutions must be carefully checked
against the entire reaction table.

The molecule table holds data for the specific molecules, such as common and IUPAC
names, chemical formula, and a list of functional groups. Functional group interactions
are the defining feature in retrosynthetic reactions, so information on each functional
group for each molecule is entered into the database. If a molecule is removed from the
database, the system will cascade through the reaction and reagent_set tables and
remove any reactions and reagent sets that contain that molecule’s primary key.
Similarly, if a functional group is removed from the database, all of the molecules
containing that functional group will be removed.

In our original database planning, we proposed the idea of storing the images of the
molecules and functional groups themselves. The overhead involved with retrieving the
long bit sequence representing an image from the database tier would easily match the
overhead of retrieving the image as a file on the presentation tier. We consequently
chose to store the image files in an ordinary directory.

Enterprise JavaBeans

The Enterprise JavaBeans (EJB’s or beans) encode the main application logic. Beans are
server-side components that encapsulate the business logic of an application[2]. In this
case, the business logic includes retrieving data from the database and presenting it as a
Problem object for a student to solve. The business logic then has the responsibility of
checking and storing the solution submitted by the student.

Beans generally involve three parts, the home interface, the component interface and the
enterprise bean implementation. The home interface is the piece that is responsible for
creating instances of the component interface for an enterprise bean[1]. The component
interface of an enterprise bean defines the methods available for clients to invoke[1]. The
enterprise bean contains the implementations of the methods specified in the component
interface[1].

The home interface is found by doing a Java Naming and Directory Interface (JNDI)
lookup. If the stub is successfully located in the JNDI namespace maintained by the
application server, the create() method can then be called on the home interface in
which an instance of the enterprise bean is chosen from the JBoss instance pool and the
component interface stub is returned. Methods are invoked on the component interface
stub which then calls the same methods implemented in the enterprise bean as shown in
Figure 4.

Too much logic existed to house in one enterprise bean, so we initially designed six
EJB’s to contain the main application logic of the system. The four entity beans,
ListGenerator, ProblemGenerator, UserManager, and SolutionCheck have
specific tasks to perform for each individual user, and are shown in Figure 5.

The UserManager bean is responsible for checking appropriate login information for
security purposes. The UserManager is also used for storing correct and incorrect
solutions submitted for problems and the time spent for each problem, in addition to
maintaining the student’s skill level.

The ProblemGenerator bean is only responsible for retrieval of problem data. This
bean is not designed to hold any intelligence logic, but instead simply takes a problem
number as an argument. The value corresponds to the primary key of a reaction stored in

Figure 4: example code that locates the home interface and retrieves the component interface to
invoke methods on the bean

// find the home interface from the JNDI Namespace
BookKeeperHome home = (BookKeeperHome) naming.lookup("BookKeeperHome");

// retrieve the component stub by calling create() on the home interface
BookKeeper keeper = home.create();

// invoke methods on the component stub
keeper.checkSolutionAndStore(userName, answered_problem);

the reaction table. The problem generator retrieves this reaction and the molecules
contained in it, and returns a Problem object to be displayed by the JSP pages.

A Problem object has two states: answered and unanswered. Once a solution to a
problem has been submitted by a user, the problem is marked as answered, checked by
the SolutionCheck bean and stored by the UserManager bean as shown in Figure 5.
The Problem object is an application of the Value Object Pattern[4]. If, for example,
reactions were comprised of ten total pieces of data, the presentation tier could use ten
different accessor methods to retrieve all of it. This would require ten remote method
invocations, and would be costly in terms of performance. Instead, all of the necessary
data can be placed in a data structure or value object, so the same data can be retrieved
with only one remote method invocation.

The ListGenerator bean is responsible for generating lists of reagent sets and possible
starting materials for the problem. These will be displayed for the user to pick from
when solving the problem. Like the ProblemGenerator bean, the ListGenerator
bean contains no intelligence logic, and simply takes parameters that determine which
molecules and reagent sets are chosen and returned.

The SolutionCheck bean is responsible for checking the student’s solution to the
problem. This bean must query the database to find all possible reactions with the correct
target molecule in the rare case that more than one answer is possible for the given
starting materials and reagent sets. When this is completed, the appropriate response is
given to the presentation tier, and the UserManager records the student's solution.

There are two session beans for the application, the BookKeeper and Retrieval beans.
These are shown in Figure 5. Both of the session beans are stateless, meaning that there
is not a dedicated bean instance for each user for the duration of the session. Instead the
beans will be re-pooled when each transaction between the presentation and application
tiers is complete.

Figure 5: diagram of EJB interaction in the system

The Core J2EE Patterns book warns that exposing the entity bean to clients from a
different tier “results in network overhead and performance degradation”[4]. A proposed
refactoring for this is called Wrap Entities With Session, where a Session Façade is
created to “manage the business objects, and provide a uniform coarse-grained service
access to clients”[4]. The BookKeeper and Retrieval session beans were introduced
as examples of a Session Façades. These beans reduce the number of remote method
invocations between the application and presentation tiers. The session beans use
container managed invocations on entity bean methods, which are less costly than remote
invocations from the presentation tier[1]. The two session beans provide a service access
layer for the presentation tier. By communicating only with the session beans, the
presentation tier will be buffered further from the inner workings of the business logic
contained in the entity beans. This increases the modularity of the system.

Once the beans were implemented, they were packaged in a jar (Java Archive) file
along with the appropriate deployment descriptors, and deployed. Deployment
descriptors are XML documents used by the JBoss application server to run the deployed
beans. The home, component, and enterprise bean interface implementations of each
bean must be specified inside the ejb-jar.xml file. The names of the beans are put
into the JNDI namespace, and instances of the specified beans are pooled for use. The
beans are automatically deployed by placing the jar file in the JBoss deploy folder.

The Enterprise JavaBeans were tested using the JUnit framework. The test classes
remotely invoke methods in the application tier, and compare the returned values with
values queried directly from the database using JDBC. Testing uncovers bugs in the
code, and increases our confidence in the system.

Java Server Pages

The Java Server Pages (JSP pages) for the organic chemistry tutorial combine static html
with dynamic content from the database[2]. The JSP pages are deployed in the
presentation tier and are solely responsible for making remote method calls on the session
beans through the bean’s remote component interface, and presenting the data given to
them.

The first JSP page is a standard login page to allow the user into the system. As
previously mentioned, the system needs to be secure from non-users, so the user’s name
and password will be checked by the EJB’s before the second page is displayed.

The second JSP page displays individual user data such as the student’s skill level, and
the number of correct and incorrect solutions previously submitted by the student. The
page also contains a list of skill level ranges a student can choose from so they can work
at a comfortable level. The chosen skill level is used by the EJB’s to pick an appropriate
problem for the student. The third JSP page then displays all the necessary information
about the problem to the student. The reaction is displayed in standard reaction notation
much like Figure 1, but only the target molecule is displayed. Possible starting materials

and reagents sets are listed for the student to choose from, and when selected, are
displayed in the reaction. Once the solution is complete the problem is returned to the
BookKeeper bean, the solution is checked and stored, and the appropriate response is
posted.

Organic chemistry faculty will have access to additional JSP pages that display the
available administrative tools. These pages will not be visible or accessible to anyone
without the necessary privileges. The administrative tools are further described in Future
Work.

JSP pages are deployed in the Apache web server. Like EJB’s, the JSP pages must be
packaged along with the appropriate deployment descriptor. Instead of using an ordinary
.jar file extension however, they must be packaged in a web-archive (war) file. The
war file is made by using the jar tool to package the class files and deployment
descriptors, and then renaming the file with a .war extension.

Future Work

A number of additional enhancements are planned for the system. The first is a set of
administrative tools that will allow the organic chemistry faculty to maintain and observe
the system. Reactions and molecules will need to be added to the system to build a larger
knowledge base or to shape the focus of the problems. Faculty will need to be able to
view statistics on individual students, groups of students, or the entire class. The tools
will allow this kind of data to be viewed or added without any knowledge of SQL or the
MySQL database.

The system was designed to house an intelligent tutoring agent to maximize the
effectiveness of the tutorial for students. The tutoring agent will be responsible for
selecting an appropriate problem each time for each student. For instance, if a student is
having difficulty with a particular type of retrosynthetic reaction, then easier problems of
the same type could be given until the student learns the concepts involved. This
particular kind of agent would require the grouping of all retrosynthetic reactions by
functional group interactions.

The design of the system allows for experimentation on different aspects of and
approaches to intelligent tutoring behavior. Adding or removing a tutoring module
would require only the deployment or un-deployment of the corresponding EJB. This
allows us to combine, compare, and study implementations of different intelligent
tutoring agents that use different theoretical approaches or techniques. These different
approaches may include the use of fuzzy sets, neural networks, and/or evolutionary
computation. The conclusions drawn from these proposed experiments should help us
maximize the potential of this application in effectively supplementing undergraduate
course material in retrosynthetic analysis.

References

1. Cavaness, Chuck & Keeton, Brian (2001). Special Edition Using Enterprise
JavaBeans 2.0 [Electronic Version]. Indianapolis, Indiana: Que Publishing.

2. The J2EE Tutorial (2002). Retrieved February 9, 2002 from
http://java.sun.com/j2ee/tutorial/

3. JBoss 3.0 Documentation (2001). Retrieved March 1, 2002 from
http://www.jboss.org/online-manual/HTML/index.html

4. Alur, Deepak, Crupi, John & Malks, Dan (2001). Core J2EE Patterns: Best
Practices and Design Strategies. Upper Saddle River, New Jersey: Prentice Hall.

Acknowledgements

We would like to acknowledge the many and valued contributions of the following
individuals to this project:

• Nancy Carpenter, our organic chemistry expert
• Janet Kinney, our artificial intelligence consultant
• Matt Hardy, the architect of the early OCT prototypes
• Jeremy Kallstrom, our lab manager who helped with the installation of JBoss

