Ant Algorithm Parallelization

Jake Krohn
Department of Computer Science

University of Minnesota, Morris
krohnki@mrs.umn.edu

Abstract

Using the social insect colony metaphor, researchers have been able to develop
surprisingly fast and accurate algorithms to help solve combinatorial optimization
problems such as the Traveling Salesman or Quadratic Assignment problems. Informally
known as ‘ant algorithms,” these approaches use a swarm of simple information-sharing
agents, which self-organize into what is often the best solution to a given problem. A key
to this self-organizing behavior is modification of the environment, which is done by
each agent and which affects the later behavior of all of the other agents in the system. In
natural ant colonies, these environmental modifications occur through the use of chemical
secretions called pheromones; computer scientists have successfully put the pheromone
idea to use in settings far removed from the biological world. Research in this area is
promising, and is limited only by the computational power available to simulate the
movement of multiple agents over a defined problem space. Faster convergence towards
an optimal solution can be shown when a parallel implementation of an ant algorithm is
used. This is due to the increased simultaneous searching of solution spaces over a
parallel or distributed architecture. This paper discusses one such system, which is
written in Java and uses the JPVM parallel frameworks as a message passing interface to
help solve the Traveling Salesman Problem. The design of the parallel algorithm and the
information sharing strategy are addressed, as the approach used in a parallel/distributed
architecture differs from the approach used in a sequential computing environment. Some
early results are given and a comparison to a similar sequential algorithm will be shown.

Keywords

Ant algorithm, ants, Ant System, distributed processing, emergence, Java, JPVM, parallel
processing, stimergy, self-organization, Swarm Intelligence, Traveling Salesman Problem

INTRODUCTION

In an ironic turn of events, many researchers in the ficld of computer science have pushed
aside their keyboards and CPU’s in favor or a more archaic technology: the ant colony.
And they do so with good reason. Ants, as well as other social insects, have an uncanny
knack for collective problem solving.

Much work has been done by computer scientists and ethologists to model this behavior.
Through these models, researchers have gained insight as to how answers to complex
problems arise from the interactions of simple organisms. This knowledge has then been
successfully transformed into a series of problem solving techniques — a form of
Artificial Intelligence called Swarm Intelligence. In Swarm Intelligence, problem solving
is not centrally managed by one controlling force; rather a distributed “swarm™ of
relatively simple components work in unison. From these basic interactions, a solution
emerges.

The Swarm Intelligence model has been applied to a number of problems (see [1, 11] for
an overview) and successes are many. However, this approach faces the same equalizing
limit as all others: namely, the bound imposed by available processing power.

One way to circumnavigate this obstacle is by using simple ideas of parallel processing
over a distributed network of processors. The resulting speedup should be significant
enough to warrant the initial investment into parallel development.

In this paper, I will first explain the Swarm Intelligence model using the common
Traveling Salesman Problem as an example of the model’s applicability. An
understanding of how the model is applied to this popular benchmark problem will lead
to a general understanding of the model as a whole.

While the Swarm Intelligence approach lends itself naturally to parallelization, issues
such as information sharing strategies exist and will be discussed. The choice of
programming language and parallel framework is equally as important and will also be
covered. The paper will also include some early results and a comparison to a similar
sequential algorithm. The paper will conclude with comments on these results and
possible directions for future research.

The Swarm Intelligence Model

In Swarm Intelligence, the guiding model of intelligence is the social insect colony.
Characteristic of this kind of intelligence are the concepts of self-organization and
stimergy.

Self-Organization

Self-organization is a set of dynamic mechanisms whereby structures appear at the global
level of a system from interactions among its lower-level components [1]. Having no

knowledge of the global state of the system, these components (called agents) make
decisions using only local information. From these local decisions, a global pattern
emerges.

Self-organization relies on four basic properties [1]:

1. Positive feedback (amplification), which is the reinforcement of behavior that leads to
a desirable outcome. In Swarm Intelligence, positive feedback is modeled by a digital
equivalent to the attractive chemical secretions released by ants and other organisms,
which is called pheromone.

2. Negative feedback, which helps counterbalance positive feedback so that the
reinforcement of one (possible sub-optimal) behavior will not constantly occur at the
expense of other (possibly more favorable) solutions. In a system of ants, pheromone
evaporation 1s one such example of negative feedback.

3. Fluctuations in the system, be they random actions on the part of the agents or
unplanned changes in the environment itself. Fluctuations ensure the discovery of
new (perhaps better) solutions and provide the seed from which emergent structures
grow. As an example of this, ants in colonies move about the land with a somewhat
unpredictable pattern, ensuring this property remains intact.

4. Muliiple interactions of the agents, along with reuse of information provided by
others, creates a system where the intelligence is stored not at the local level, but
within the structure of the system itself. Ants in colonies encounter many fellow ants
and leave pheromone trails while carryving out tasks; these meetings and trails provide
a data store that is independent of the ants themselves.

Stimergy

Interactions within a society of social insects can take on one of two forms: direct or
indirect. Direct interactions are obvious in nature: bodily contact, visual contact, food
exchange, etc. Indirect interactions are subtler, but are no less important. In fact, much of
the research in Swarm Intelligence revolves around understanding and modeling these
interactions. Indirect communication occurs when one agent modifies the environment in
which it resides in such a way that the behavior of subsequent agents (including itself) is
affected. Thus, storage of information occurs not at the individual level but instead at the
colony level. Because of this, reliance on any specialized type of agent is reduced and
information can be maintained over time with no apparent effort on the agent’s part.

This coordination through modification is called stimergy. By exploiting the stimergic
approach to coordination, researchers have been able to design a number of successful
algorithms in such diverse application fields as combinatorial optimization, routing in
communication networks, task allocation in a multi-robot system, exploratory data
analysis, and graph drawing and partitioning [5]. In this paper, I will describe the
application of one such algorithm to the Traveling Salesman Problem.

The Traveling Salesman Problem

The Traveling Salesman Problem is a well-known NP-complete problem that is often
used as a benchmark when measuring the performance of new general-purpose heuristics.
If one wishes to find the optimal solution for a given problem set, all of the possible
solutions must be explored; this value grows exponentially as the problem size increases,
thus requiring intense computation.

In the Traveling Salesman Problem, the goal is to find a closed tour of minimal length
connecting # given cities. Each city must be visited once and only once. The problem can
be defined generally on a graph, G = (7, E), in which the vertices (V) represent cities and
the edges of the graph (F) are the connections between the cities. A value, dy;, 1s assigned
to each edge and represents the distance between city i and city ;.

Ant Algorithms

Ant System

In his pioneering paper on the field of Swarm Intelligence [7], Marco Dorigo introduced
Ant System, the problem solving heuristic derived from the study of any colonies. The
algorithms that use Ant System are called ant algorithins.

Dorigo was interested in the use of ant colonies as a metaphor for problem solving. He
was not interested in the realistic simulation of ant colonies. Because of this, Dorigo’s

artificial ants (called anis) have some major differences with their real counterparts.

First, ants have a memory. In the case of the Traveling Salesman Problem, this memory is
used to store a list of previously visited cities.

Second, ants are not completely blind. While natural ants rely on chemical signals to
navigate, Dorigo’s ants can sample their external environment by whatever means
necessary. For the purposes of the problem at hand, ants attempting to solve the Traveling

Salesman Problem are aware of the distances between cities.

Finally, due to obvious constraints imposed by the architecture of current computers,
artificial ants live in a world where time is discrete.

Ant System and the Traveling Salesman Problem

To solve the Traveling Salesman Problem using the ideas of Ant System, a graph & is
randomly populated with m ants, where

m=3h 1) M

and b;(t) is the number of ants in town i at time £.

Each ant has the following characteristics:

¢ To model pheromone deposits, when traveling from town 7 to town j, cach ant lays a
substance, called frail, on edge (i, /);

o It chooses the town to go to with a probability that is a function of the town distance
and the amount of trail present on the connecting edge;

o A data structure, called a fabu list, is associated with each ant. It is used to store the
cities visited by the ant and forbids the ant to visit them again until a cycle has been
completed. The vector containing the tabu list of the k-th ant is tabuy and tabug(s) is
the s-th element of the tabu list of the k-th ant.

Trail Updating

Let 7;;(t) be the intensity of the trail on edge (i, j) at time ¢. After » iterations of the
algorithm, the trail intensity becomes

T (t+m)y=pT, () + Az, (L1+n) 2)

where p is a coefficient such that (1 - p) represents the evaporation of trail between time ¢
and time ¢ + » and

Az, (tt+n)=> Az (t,t+n) 3)
=1

where Arijk is the quantity per unit length of trail substance laid on edge (i, j) between
time 7 and 7 + » by ant £.

Trail updating may be done after each successive move of the ant (termed local updating)
or after all ants have completed one cycle (global updating). For the purposes of this
study, both strategies were used in combination; see [7] for a comparison between the use
of the two strategies.

In local updating, pheromone values are updated on edge (7, j) every time an ant moves
from city i to city j. The amount of new pheromone added to the edge is equal to

© If the k™ ant goes from i to
Afzjk (t.t+1)=1d, between timet andt + 1 'C))
0 otherwise

Where O is some constant quantity of pheromone. The new quantity of pheromone
deposited on an edge is inversely proportional to the edge length; thus, over time, shorter
edges will receive more pheromone, which leads to a positive feedback loop of increased
use and further reinforcement.

During global updating, only one ant is allowed to update the trail values. This elitist
strategy requires that only the ant with the iteration-best tour be allowed to deposit
additional pheromone. The amount of pheromone deposited on edge ¢, jj is equal to

Q If the k™ ant uses edge
/_\Tyk (t,t+n)=47" (7,7) in its tour)
0 otherwise

Where L7 is equal to the tour length of the iteration best ant. Trail updating is also done
using 15 the length of the globally-best solution found thus far. In the algorithm used for
this study, global updating was done afier every 15 iterations of the ants, and used ¢ 1o
determine the quantity of pheromone deposited.

Similar to local updating, the new quantity of pheromone deposited is inversely
proportional to a certain value; this time, the value in question is tour length, not edge
length. Thus, edges which constitute shorter tours are reinforced more which leads to
another positive feedback loop of more use and greater reinforcement.

To counteract the positive feedback loops implicit in both local and global updating, this
study introduced sporadic best path updating, in which all trail values were reset to an
arbitrary value and the best tour was reinforced sporadically. That is, edges present in the
best tour were reinforced with pheromone with a probability of p,. For the purposes of
this study, p, = .85. This strategy aimed to increase tour diversity while still maintaining
exploration in the neighborhood of good solutions.

Transition Probability

The transition probability from town 7 to town ; for the k-th ant is

[, 1", I Ifj € allowed
* = o, (D] [1, 4
plj (t) - ZHEaﬂowed[(O 2,1 (6)

0 otherwise

where allowed = {j is not in tabuy} and #; 1s the visibilify of town j from town i, which 1s
simply the value 1/dj;. The values a and § are parameters that control the effect of trail
and visibility on the transition. Essentially, by manipulating the values of a and /3, one
can transform the transition probability from a greedy heuristic that values visibility over
trail (f >> a) into one that uses only the autocatalytic process for decision-making (a >>
/). Best results have been found when both values are approximately in the same range
4. 7].

A Modified Ant System Algorithm

The algorithm used by the author to solve the Traveling Salesman Problem closely
mimics the AMAX-MIN approach presented by Stiitzle and Hoos [16]. One major
difference is the exclusion of a local search optimizing procedure such as 3-Opt [12],
which results in a faster algorithm with less accuracy. However, as the results will later
show, this exclusion does not impact the performance of the algorithm in any major way.

A basic sequential algorithm of the process used by the author to solve the TSP is shown
below:

1. Initialize all data structures. Set = 0 and set an initial pheromone trail value on every
edge. Place the m ants randomly on the nodes of the graph.
2. For each ant, do:
2.1. Until every city has been visited, do:
2.1.1. Choose the town to move to, with probability p;, which is given by
equation (6) and move the ant to the chosen town.
2.1.2. When traveling from city 7 to city j, apply the local trail updating rule
given in equations (2) and (4) withn =1
2.1.3. Insert the chosen town into the ant’s fabu list.
3. Every 15 iterations, update trail values using by equations (2) and (5) and the best
tour found thus far.
3.1. Every 40 iterations, clear all trail values and sporadically reinforce the edges
included in the best tour found thus far.
4. Memorize the shortest path found thus far and empty all tabu lists.
5. Ifthe end condition (usually defined as a number of cycles) is not met, then:

- Sett=t+n
- Gotostep2
Else:

- Print the shortest path and stop
In words, the algorithm works as follows:

At time ¢ = 0, initialization occurs and ants are distributed on the map. Initial trail
intensities, usually quite high, are set for each edge. As ants move from town 7 to town j
with probability p;, edge (i, j) is updated with a new trail value, as evaporation and
pheromone deposits are simulated. This city to city movement is repeated for each ant
until a valid TSP tour has been formed. Tour formation is repeated for all ants, at which
point the tour with the shortest total length is determined. If the shortest tour found during
this iteration is less than the previously-found shortest tour, the new tour is memorized.
Every 15 iterations, trail pheromone is added to the edges that comprise the best tour.
Every 40 iterations, the trail values are reset and the edges in the best tour are
sporadically reinforced with probability equal to some user-chosen value of p,. Tabu lists
are then cleared, ants are placed anew on the map, and the algorithm repeats until the
user-defined condition, usually a certain number of cycles, is met.

Parallel Solution Strategies

While it is true that this population-based approach lends itself naturally to parallel
processing, implementation details prove to be non-trivial and worthy of further
investigation. Broadly put, a different strategy is required when running the algorithm in

parallel as opposed to sequential execution. Overviews of different approaches can be
foundin [2, 13, 15].

This study focuses on the information exchange strategy between simultancous instances
of the ant algorithm running in a distributed parallel environment. “Information exchange
strategy”™ is a broad term that encompasses not only the actual sending of data across
communication lines, but also the frequency of the communications and the level of
importance assigned by one instance to data gleaned from fellow parallel instances.

Design strategy and implementation

To allow for rapid development and easy modification, the initial sequential program was
created using Sun Microsystems® Java. Although a slower language than similar
languages such as C++ in terms of computational performance, the large API and
automatic garbage collection mechanism made Java an attractive choice for this study.
One negative side effect of this decision, however, is the inability to compare the results
of this study to results of other studies in terms of execution times, since Java’s
interpreted bytecode makes it inherently slow. It is hoped, however, that the strategies
discussed here can be put to use in other similar algorithms regardless of the
implementation environment.

The choice of Java led to a search for an appropriate message-passing parallel
framework. A PVM [17] clone, JPVM [9], was found and used. The use of JPVM was
very similar to the popular PVM for C/C++ and FORTRAN, but with the convenience of
working in an all-Java environment.

Worker Communication

Because of the stimergic nature of the artificial ant colony, the only information that is
necessary to share amongst the instances of the algorithm is the pheromone trail
information. As in real ant colonies, the artificial pheromone represents the major channel
of colony communication, directing the ants towards good solutions. Information sharing
should not be too frequent, however, for constant knowledge of the state of the global
system can impair a colony’s diversity, which must be maintained if new, better,
solutions are to be generated. Conversely, if too little information is shared, colonies may
find themselves stagnated in local optima. Therefore, it is important to choose a
work/update schedule that gives fair play to both requirements. From observations of the
system at work, it was determined that a 250 local iterations per update schedule would
be followed. This value is by no means a proven optimum and further study into the
matter would be worthwhile.

When designing the parallel algorithm, a distinction was made between the global-best
tour and the local-best tour. The former is the best tour found thus far by all instances of
the algorithm, while the latter is a record of the best tour found thus far by an instance,
which is often a different value for each instance in a particular run. These values are
stored separately by each instance and are used in different ways by the trail update
mechanism. The locally-best solution is the value used to determine the quantity of
pheromone deposited when performing the sporadic trail update, while the globally-best
solution is used for complete trail reinforcement, and is discussed in the next section.

Trail Update Pressure

Another issue to consider when sharing information between colonies is the degree of
influence the globally-best solution is allowed to have over the pheromone trail values in
each mstance. If too much pressure is exerted by the globally-best solution, the search
space will narrow to an unacceptably small range and no new solutions will be
discovered. Too little pressure will have the opposite effect — the search will be
unfocused and sub-optimal solutions will result.

To better understand the effects of the trail update pressure, x, this study ran experiments
at levels of x = {0.0, 0.5, 1.0, 3.0, 6.0}. Global trail update values were computed using
an equation similar to (2):

z-ij(l"-i_n)zfo.sz(l")-l_‘K'(‘Afi_;(tsf-i_”)) (2’)
Thus, x affects the amount of new trail (determined by Lgb) that is added to the old.

Results and Discussion

To check the veracity of the trail pressure update hypothesis, tests were run on two
problem sets: the 58-city brazil38 and 42-city swiss42 problems, both of which are
available at the TSPLIB [14]. All tests were run in parallel on four similar Intel Celeron
(one 466 MHz, three 500 MHz) machines running Debian Linux 2.2.19. Message passing
was implemented through JPVM and as noted earlier, the work to update ratio was 250:1.
Each machine ran for 2000 iterations and thus exchanged information with the master
worker a total of seven times. Parameter settings used for all cases werea=1,=3, p =
0.45, and p, = 0.85. Twenty runs were performed for each level of x = {0.0, 0.5, 1.0, 3.0,
6.0}. Two pieces of data were extracted from the output and recorded: the shortest path
found after completion of the program run and the number of exchanges required until
the discovery of the best (not necessarily optimal) solution.

Results for the experiment were somewhat surprising. While behavior for large values of
i did indeed constrict exploration and lead to a high incidence of sub-optimal solutions,
the same expected behavior for small values of x did not appear. Instead, a small x (0.0,
0.5) led to faster discovery of shorter tours. No evidence was shown towards the negative
effects of an unfocused search.

Parallel Results

Figures 1 and 2 show the average tour length found by the algorithm over the range of
trail reinforcement pressure values, x. A general upward trend is noted for the tour length
in both cases and best performance is observed when x = 0.0.

1615
1614.5
1614
1613.5
£
2 1613
@
-
1
3 16125
[l
&
& 1612
@
=3
Lo
1611.5 |
1611 |
1610.5 |
1610 | : : : :
0.0 05 10 3.0 6.0
kappa

Figure 1: Effect of Global-Best Trail Update Pressure (x) on Average Tour Length — bayg29

1282

1280

1278

1276

1274
1272 4
1270 4
1268 - T T T T
0.0 05 1.0 3.0 6.0

kappa

Average Tour Length

Figure 2: Effect of Global-Best Trail Update Pressure (x) on Average Tour Length — swiss42

Using the Mann-Whitney test with a = 0.05, near-statistical significance (p-value =
.0674) was found between the tour lengths in the swiss42 test when comparing the x; =
0.0 and x; = 6.0 results.

To determine an overall best x-value, the number of optimal solutions found for cach x-
value and the average number of global iterations required to find that value were
compared for each problem set using the data listed in Table 1.

Table 1: Number of optimal solutions for a given x-value and the average number of
global iterations to find the optimal value.

0.5
bayg29
Number of times optimal tour 17 13 13 11 13
was found.

Average global iterations to| 3.59 3.62 3.76 5.09 4.73
optimal tour.

swiss42
Number of times optimal tour 20 19 18 18 15
was found.
Average global iterations to| 2.80 2.59 3.06 3.28 3.8

optimal tour.

In comparing the number of global iterations required to achieve the best (not necessarily
optimal) solution for a given run, again, ¥ = 0.0 proved to be the best general-purpose
setting. In the swiss42 problem, x; = 0.0 was significant against x; = 6.0 with a p-value of
0.405. x; = 0.5 was also significant against x; = 6.0 with a p-value of 0.0106. In the case
of the bayg29 problem, significance was achieved for x; = 0.0 against x; = 3.0 and x; =
6.0 with p-values of 0.0177 and 0.0362, respectively.

Discussion of Parallel Results

From the results of the experiments, it is clear that the best overall performance of the
system in terms of accuracy and speed is achieved when x = 0.0. This result is somewhat
surprising, for it was hypothesized before the experiment that low values of x would lead
to an unfocused search space and sub-optimal solutions.

One possible explanation for the exhibited behavior is the relatively small problem size
of both the bayg29 and swiss42 problems. It may be that the solution spaces of both
problems are small enough for the underlying algorithm, regardless of the x-value, to
fully explore and determine the optimal tour using only locally-best tour information.
This is a plausible theory, for the algorithm upon which this parallel system was based is
the MAX-MIN algorithm, which has outperformed several other ant algorithms when
applied to the Traveling Salesman Problem [16]. It would be a worthwhile endeavor to
repeat the experiment on larger problem instances such as d198, att532, and rat738 [14]
and observe the optimal x-values that emerge. With an exponentially larger solution
space, global information could play an increasingly important role in tour construction.

Comparison to a Sequential Approach

Figures 3 and 4 compare the average tour length found by the parallel algorithm with x =
0.0 to the average tour length found by a similar sequential algorithm for both the bayg29
and swiss42problems.

1620 -

1618

1616

1614

1612

Average Tour Length

1610

1608 -

‘I:l Parallel m Sequential ‘

Figure 3: Comparison of Average Tour Lengths Found by Parallel and Sequential Algorithms -
bayg29

1282 4

1280

1278

1276

1274

Average Tour Length

1272

1270

1268 -

||:| Paralel m Sequential |

Figure 4: Comparison of Average Tour Lengths Found by Parallel and Sequential Algorithms -
swiss42

As shown in figures 3 and 4, the parallel setup found shorter tours than the similar
sequential setup. Using the Mann-Whitney test for significance, the performance of the

parallel algorithm for the bayg29 problem in terms of the average tour length found is
significantly better than the performance of the sequential algorithm, with a p-value of
0.0009. The tour lengths of the swiss42 parallel runs, while on the average shorter than
the tour lengths of the sequential runs, were not able to achieve statistical significance.

Additionally, the parallel algorithm outperformed its sequential counterpart in terms of
number of optimal solutions found. The sequential approach found the optimal bayg29
tour 0 out of 20 times and the optimal swiss42 tour 16 out of 20 times. This compares to
success rates of 17/20 and 20/20, respectively, for the parallel algorithm.

Increased performance by the parallel algorithm is not surprising, for the addition of three
other machines working in parallel allows for a more through coverage of the solution
space in approximately the same amount of time. The separation of the global-best tour
from the local-best tour (which does not occur in the sequential algorithm) also helped
the parallel instances maintain a higher degree of autonomy, which encouraged diversity,
thus producing better solutions.

Conclusion

This paper introduced the ideas of Swarm Intelligence and ant algorithms and has shown
how these innovative models of problem solving taken from the natural world can be
applied to problems in the field of computer science. Application of these ideas to one
particular problem, the Traveling Salesman Problem, was the main focus of this paper. A
sequential algorithm was introduced and then refined into a more powerful parallel
model. Design and implementation considerations were discussed, including the choice
of Java and JPVM for the programming language and message-passing environment,
respectively.

Information exchange, and more specifically, trail update pressure, in a parallel system
was studied. Results, which favored low x-values, were surprising and warrant further
investigation.

Comparisons between parallel and sequential implementations were also made, and the
parallel system was shown to be superior to the sequential system in all measurable
aspects.

Possible directions for future research in parallel ant algorithms include additional study
into x-values for larger problem sets, as well as variable x-values that adapt to the amount
of variation in the current search space. A broader look at inter-colony communication in
general, especially dynamic reporting of significant gains within one colony to the global
environment, would also be an interesting topic.

References

[1] Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm Intelligence: From
Natural to Ariificial Systems. Oxford: Oxford University Press.

[2]

[4]

[3]

[7]

[10]

[11]

[12]

[13]

[14]

Bullnheimer, B., Kotsis, G., & Strauss, C. (1997). Parallelization Strategies for
the Ant System. Technical report POM 9/97. Vienna: University of Vienna.

Colorni, A., Dorigo, M., & Maniezzo, V. (1991). Distributed Optimization by Ant
Colonies. In Proceedings of FCAL91, Elsevier Publishing, 132-142.

Colorni, A., Dorigo, M., & Maniezzo, V. (1992). An Investigation of some
properties of an “Ant algorithm.” In Proceedings of PPSN92, Elsevier Publishing,
509-520.

Dorigo, M., Bonabeau, E., & Theraulaz, G. (2000). Ant algorithms and stimergy.
Future Generation Computer Systems, 16, 851-871.

Dorigo, M., & Gambardella, L.M. (1997). Ant Colony System: A Cooperative
Learning Approach to the Traveling Salesman Problem. [EEE Transactions on
Evolutionary Computation, 1, 53-66.

Dorigo, M., Maniezzo, V., & Colorni, A. (1991). Positive Feedback as a Search
Strategy. Technical report n. 91-016. Milan: Department of Electronics, Milan
Polytechnic Institute.

Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant System: Optimization by a
Colony of Cooperating Agents. [EEE Transactions on Systems, Man, and
Cybernetics—Part B: Cybernetics, 26,29-41.

Ferrari, A. (1999). JPVM: The Java Parallel Virtual Machine. Retrieved
November 1, 2001, from http://www.cs.virginia.edu/~ajf2j/jpvm.html

Freisleben, B. & Merz, P. (1996). Genetic local search algorithms for solving
symmetric and asymmetric traveling salesman problems. In Proceedings of IEEE
International Conference on Evolutionary Computation, IEEE-EC 96, 616-621.

Krohn, J. (2001). Ant Algorithms and the Swarm Intelligence Model of Problem
Solving. In Proceedings of UMM Computer Science Discipline Seminar
Conference, Morris: University of Minnesota.

Lin, S., & Kernighan, B.W. (1973). An Effective Heuristic Algorithm for the
TSP. Operations Research, 21, 498-516.

Middendorf, M., Reischle, F., & Schmeck, H. (2000). Information Exchange in
Multi Colony Ant Algorithms. In Proceedings of IEEE Symposium on Parallel
and Distributed Processing, Third Workshop on Biologically Inspired Solutions to
Parallel Processing Problems, IPDPS 2000, 645-652.

Reinelt, G. (2001). TSPLIB: Traveling Salesman Library. Retrieved December 1,
2001, from http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/

[15] Stutzle, T. (1998). Parallelization Strategies for Ant Colony Optimization.
Research report AIDA-98-03. Darmstadt: Department of Computer Science,
Darmstadt University of Technology.

[16] Stitzle, T., & Hoos, H.H. (2000). MAX-MIN Ant System. Future Generation
Computer Systems, 16, 889-914.

[17] Sunderam, V.M. (1990). PVM: A Framework for Parallel Distributed Computing.
Concurrency: Practice and Experience, 2, 315-339.

Acknowledgements

The author would like to thank Dr. Dian Lopez of the University of Minnesota, Morris,
for her assistance with the preparation of this paper.

