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Abstract 
 
This paper presents a multiply connected neural network designed to estimate the fractal 
dimension (Df) using the Box-counting method (BCM). Fractal analysis is a powerful 
shape recognition tool and has been applied to many pattern recognition problems. 
Additionally, the Box-Counting Method is one of the most popular methods for 
estimating Df.  However, traditional methods used to estimate Df are sequential and have 
a computational cost of O(N log2(N)). A parallel method would be more efficient 
computationally and would suggest a possible biological realization. 
 
The architecture presented separates the calculation of Df into two sections, a data 
sampling section and a linear regression section. The data sampling section provides the 
ability to dyatically sample the data. The linear regression section simply calculates the 
slope of the best line through the sampling results. Finally, we show that the network 
scales well and can be designed to analyze 1-dimensional data or 2-dimensional data. 
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1. Introduction 
 
This paper presents a multiply connected neural network designed to estimate the fractal 
dimension (Df) using the Box-counting method (BCM). Calculation of Df is becoming a 
common data processing tool, and in general, the faster one can do it, the better. 
Traditional techniques are sequential. Not only do they not operate on the entire data 
vector simultaneously, they must revisit the data vector several times, performing the 
sequential processing each time. Hence, as the vector length increases so does the 
processing time. Traditional techniques have a computational cost of O(N log2(N)). A 
parallel (or neural network) method would be more efficient computationally and would 
suggest a possible biological realization. 
 
We were led to consider a neural network approach to calculating Df  by the possibility of 
the biological visual processing system’s use of the Mellin transform for pattern 
recognition. There is evidence that the visual processing system of cats and some species 
of primates uses a log-polar transformation[1]. A log-polar transform followed by a 
Fourier transform is a known method for scale and rotation invariant pattern recognition 
(a Mellin transform). Therefore, an obvious question to ask is: “Does the biological 
visual processing system also employ a Fourier transform?” That question has not yet 
been answered. However, artificial neural networks have been developed which can 
perform a Fourier transform[2]. The evidence of the biological realization of the log-
polar transform and the development of the neural network based Fourier transform, does 
suggest the possibility that a Mellin transform is used by the visual processing system for 
pattern recognition. 
 
Given the above, we now ask: “Does the biological visual processing system employ 
more than one pattern recognition method?” A neural network implementation capable of 
estimating the fractal dimension does open that possibility.  
 
In this paper, we present a review of fractal analysis in section 2, present our neural 
network implementation in section 3, and our concluding remarks in section 4. 
 
 
2. Background 
 
In the 1970s, Beneto Mandelbrot introduced a new field of mathematics to the world. 
Mandelbrot named this new field fractal (from the Latin term “fractus”) geometry[3]. 
Mandelbrot claimed that fractal geometry would provide a useful tool to explain a variety 
of naturally occurring phenomena. A fractal is an irregular geometric object with an 
infinite nesting of structure at all scales (self-similarity). Fractal objects can be found 
everywhere in nature such as coastlines, fern trees, snowflakes, clouds, mountains, and 
bacteria. Some of the most important properties of fractals are self-similarity, chaos, and 
the non-integer Df, which gives a quantitative measure of self-similarity and scaling.  
 
Fractal geometry does not concern itself with the explicit shape of objects. Instead, fractal 
geometry identifies the value that quantifies the shape of the object's surface, the fractal 



dimension(Df)of the object. For example, a line is commonly thought of as 1-
dimensional object, a plane as a 2-dimensional object, and a prism as a 3-dimensional 
object. All these dimensions have integer values. However, the surfaces of many objects 
cannot be described with an integer value. These objects are said to have a "fractional" 
dimension. Consider the following example to illustrate the concept of “fractional” 
dimension: 

 
Consider a 1-D line. 
Bend it. 
Bend it some more. 
Bend it infinitely many times. 
Eventually, the line is transformed into a 2-D plane.  

 
Note that the 1-D line did not instantly become a 2-D plane; there was a transition during 
which it was 1.xx-D. Essentially, with fractal geometry, the fractal dimension would be 
described as "1 plus the absolute value of the ratio of the log of the increase in surface to 
the log of the increase in volume."  
 
The fractal theory developed by Mandelbrot[4] is based, in part, on the work of 
mathematicians Hausdorff and Besicovitch[5]. The Hausdorff-Besicovitch dimension, 
DH, is defined as: 
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where Nε is the number of elements of ε diameter required to cover the object. 
Mandelbrot defines a fractal as a set for which the Hausdorff-Besicovich dimension 
strictly exceeds the topological dimension. Df can be defined as the ratio of the number of 
self-similar pieces (N) with magnification factor (1/r) into which a figure may be broken. 
Df is defined as:  
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Df may be a non-integer value, in contrast to objects lying strictly in Euclidean space, 
which have an integer value. The figures below depict two well-known fractals and their 
fractal dimensions. 

  Enlarged:  
 

N : 4 
r : 1/3 
Df : ln(4)/ln(3) = 1.261859 

 
Figure 1. Koch-curve. 



 
 

 Enlarged:  
 

N : 3 
r : 1/2 
Df : ln(3)/ln(2) = 1.58496 

 
Figure 2. Sierpinski-Gasket. 

 
Fractals are used to characterize, explain, and model complex objects in nature and 
artificial objects[6] and a considerable number of applications using fractal geometry 
have been studied. Fractal analysis has been successful in identifying corn roots stressed 
by nitrogen fertilizer [7], steer body temperature fluctuations in hot and cool 
chambers[7], measuring textural images[8], and measuring surface roughness[9]. In 
addition, fractal analysis has proven useful in medicine as medical images typically have 
a degree of randomness associated with the natural random nature of structure. Osman et 
al[10]. analyzed Df of trabecular bone to evaluate its potential structure. Other studies 
successfully used Df to detect micro-calcifications in mammograms[11], predict osseous 
changes in ankle fractures[12], diagnose small peripheral lung tumors[12], distinguish 
breast tumors in digitized mammograms[13], and detect brain tumors in MR images[14]. 
Studies have also shown that the changes in Df reflect alterations of structural properties.      
 
There are a variety of algorithms for estimating Df, such as the Box-counting algorithm, 
the pixel Dilation method, the Calipher method, and the Radial Power Spectrum method. 
The Box-counting method (BCM)[15] is one of the most popular and simplest. With 
BCM, we place an arbitrary grid over the structure to be measured. We then count how 
many boxes in the grid are involved with the structure. The process is then repeated over 
and over with a grid half the size of the previous (dyatic reduction). For example: in the 
figure below, in the upper-left image, the letter 'A' involves 4 boxes. In the upper-right 
image, the letter 'A' involves 5 boxes. In the lower-left image, 12 boxes are involved. In 
the lower-right image, 35 boxes are involved. 
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Figure 3. BCM algorithm example. 
 

We tabulate and plot the data on a log-log plot. This is shown in table 1 and figure 4. 
 

Table 1. BCM example data. 
 

1/r  N 
2     4 
4  5 
8  12 
16  35 

Figure 4. Log-log plot of data. 
 

Linear regression is used to find the best fitting line. Df is the slope of this line. Thus, for 
the letter “A”, Df is 1.139. 
 
However, we should note that the BCM has its criticisms, especially when applied to 
digital images[16]. In particular: A digital image has a finite set of points, therefore there 
is a upper limit (image size) and lower limit (pixel) to ε, and the number of boxes applied 
(Nε) must be an integer value. Furthermore, there is no standard method for 
implementing the BCM. In our description of the BCM above, we used a grid size half 
the size of the previous grid. Other implementations use grid sizes of 3x3 pixels, then 5x5 



pixels, then 7x7 pixels, and so on. Hence, the BCM (and most other digitally 
implemented methods) are only estimates of Df  (dB). 
 
 
3. Implementation of Fractal Calculating Neural Network (FractalNet) 
 
FractalNet consists of two sections, one section samples the data in a dyatic manner, and 
the second section performs the linear regression. A FractalNet designed for 8 inputs is 
shown in figure 5. Note that the two sections are separated by dotted lines. We discuss 
both sections in more detail below. 
 
Data sampling section             Linear regression section 

 
Figure 5. FractalNet for 8 inputs. 

 
Data Sampling Section 
 
The data sampling section is designed to sample the data in a dyatic manner depending 
on the value of Ni. There are two types of nodes in this section: an input node (black 
squares in figure 5), which segments the inputs (to 1 or 0); and a data processing node 
(circles in figure 5), which determines the sample rate. The neural activation function for 
the data processing nodes is: 
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Note if Ni = 1 the nodes to the immediate left are summed. If Ni = 0 the nodes to the 
immediate left are treated as a single entity (via the maximum function). This is shown in 
the figure 6 where we have 4 inputs, yet the outputs have values as if we separately 
sampled 4, 2, and 1 input. 



 

 
Figure 6. FractalNet example. 

 
Given the activation function and its dependence on Ni a network becomes possible that 
provides parallel dyatic sampling. 
 
 
Linear regression section 
 
In keeping with the all-neural network architecture, we also developed a neural network 
to compute the linear regression of the data generated by the sampling section. While the 
network is relatively simple in its behavior, some parameters need to be defined: 
 
• Sample - Number of inputs to the linear regression section (3 in figure 5). 
• Size - Data set size (8 in figure 5). 
• {xxx} - Name of result/node output. 
 
Finally, note that this section, unlike the data sampling section, has some temporal 
dependencies. Specific nodes (xB and yB calculating nodes) must complete their 
processing before other nodes can perform their processing.  
 
 
Scaling 
 
Our second item of interest is how well FractalNet scales. As long one wishes to continue 
with the dyatic sampling rate, FractalNet can easily be scaled. Each doubling of the data 
set size results in 1 additional hidden layer in the data sampling section and four 
additional nodes in the linear regression section. For example, compare the network for 8 
inputs (figure 5) with the network for 16 inputs (figure 7). 
 



 
Figure 7. FracalNet for 16 inputs. 

 
 
Two-Dimensional Data 
 
Out third item of interest is the ability for FractalNet to process 2-D data. Again, only 
minor network changes are required. For example, figure 8 shows the data sampling 
section of a FractalNet that has 4 inputs and figure 9 shows the data sampling section of a 
FractalNet that has 8 inputs organized as a 4x2 pixel image. As can be seen, only minor 
changes are required to move from 1-D data to 2-D data. 
 

 
Figure 8. FracalNet for 1D (4x1) data. 



 

 
Figure 9. FracalNet for 2D (4x2) data. 

 
 
4. Conclusion 
 
This paper presents a multiply connected neural network designed to estimate the fractal 
dimension (Df) using the Box-counting method (BCM). The architecture presented is 
composed of two sections, a data sampling section and a linear regression section. The 
data sampling section employs two types of nodes: an input node, which segments the 
inputs (to 1 or 0); and a data processing node, which determines the data sample rate. The 
data processing nodes use a neural activation function that, depending on the value of Ni, 
is designed to sample the data in a dyatic manner. The linear regression section computes 
the slope of the line through the results generated by the data sampling section. The 
architecture presented scales well and can de modified to process 1-D or 2-D data. 
 
While the neural network presented does generate an estimation of Df using the BCM, it 
is not entirely biologically founded. Several of the activation functions are not 
biologically plausible. These concerns are the focus of future work on FractalNet. 
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