Using Open Software for Software Engineaing ClassProjeds

Mark M. Meysenburg
Information Science and Technology Department
Doane College
mmeysenbur g@doane.edu

Abstract

In this paper, we describe asuccesgul software engineering classproject, in which a
large open-source program was employed. The use of the open-source program al owed
students to experiencethe rediti es involved with understanding, maintaining, and
extending software wnsiderably larger than they are normally exposed to in coll ege
courses. In this paper we describe the way in which we dhose our open-source program,
the adivities dudents completed during the project, and the educaional benefits achieved
by students.

In the past, the one-semester-only nature of the software engineaing course meant that
students were often ureble to experiencefirst-hand many of the key principles of
software engineering. Put smply, students could na develop a system from scratch large
enough to require many of the pradices taught in the murse. Problems such as these led
us to use open-source software for our software engineering course projed.

We those the open-source software based onfive criteria source language, run-time
environment, operating system, size, and avail able documentation. During the projed,
students had to complete severa adivities. First, they had to succesdully build the game
used for the projed. Then, they had to produce some initial documentation for the system
in the form of astructure dhart. Next, they had to find and correct severa logic errors,
inserted into the system by the profesor, based onwritten bug reports. Finaly, they had
to extend the game in ways of their own design and present their improved games to the
class

Discussons with students during the dassmade it clear that the students gained much
greder resped for the value of quality documentation and sound asign principles. The
students were ale to gain some experience with alarge (200+ sourcefiles), “real world”
software system. Students also gained insight into the work of maintenance programmers,
pasitions where many new software engineers will begin their careers. In these ways and
others, the use of open-source software for the dassprojed was very beneficial to our
students.

I ntroduction

In this paper we describe how we were &leto successully incorporate alarge, open-
source software game into the software engineaing course & Doane College. In the
sedions below, we describe the factors motivating us to add such a project to ou course,
the aiteria used to seled our open-source software system, the adiviti es software
engineaing students participated in duing the project, and the educaional benefits

aff orded to the students through the project. Finaly, we onclude with asedion
describing lesoons leaned, and hav we will modify the open-source projed for future
software engineering courses.

Motivating factors

At Doane College, ou software engineering course is a one-semester, 300-level class
The dassis offered every other year, with an average eroliment of approximately 20
students. The only pre-requisites for the dassare two introductory C++ programming
courses. The studentsin the course aetypicaly amix of Computer Science students,
who wually have dlightly more programming experience, and Information Systems
students, who dten have no programming beyondthe introductory C++ courses. The fact
that the courseis only one semester long introduces certain problemsin conveying some
of the most important software engineaing concepts.

In particular, the one-semester-only nature of the software engineaing course meant that,
in the past, students were often urable to experiencefirst-hand many of the key principles
of software engineering. During the curse, we would attempt to buld asmall system
from start to finish. But, pu simply, students could nd, during the curse of one
semester, develop a system from scratch large enough to require many of the pradices
taught in the course.

For example, the critica importance of documentation was hard to demonstrate in such a
projed, as the systems developed were relatively small and the time span was dort
enough that all the detail s could be grasped and retained. Even with asmall system not
constructed by the students, the size of the system would all ow students to examine and
understand the software withou adequate documentation.

Fault isolationislikely to be eaier in asmall, start-to-finish projed than it would be on
production-size systems. While eae of fault detectionwould be agoodill ustration d the
benefits of sound asign (OOP, moduarity, etc.), it would nad adequately prepare
students for the difficulties with fault isolation they will li kely encourter in their carees.

The particular difficulti es encourntered in software maintenanceare dso hard o
impossbleto ill ustrate with a small system developed from start to finish. Thisis
particularly true in aone-semester course; students barely have enough time to analyze,
design, code andtest asystem. There simply isn't timein the wurse to adually practice
software maintenance adivities.

The difficulti es li sted above motivated usto use open-source software for our software
engineaing course projed. In addition, we redize that most entry-level software
engineaswill be working on maintenance projects, rather than developing new systems,
so it makes sense to expaose students to software maintenance adiviti es.

Choosing the open-source software

Oncewe dedded to use an open-source system for our class we nealed to find a suitable
system. We dhose the system for our open-source software projed based onfive criteria
sourcelanguage, run-time environment, operating system, size, and avail able
documentation. We seached for our open-source software & one of the largest online
open-source repositories, sourceforge.net (http://sourceforge.net).

Sinceour programming courses are taught in C++, we wanted ou project software to be
written in C++ (or, lesspreferably, C). Thankfully, many open-source systems met this
requirement, although we foundrelatively few pure C++, oljed-oriented systems.
Expanding our language requirements to include other languages, such as Java, would
have dlowed us to choose from more objed-oriented systems, bu we chose to stay with
C/ C++, so that the software engineering course muld focus on software engineering
principles, and nd on rew language implementation cetail s.

By the time our students take the software engineering course, most of them have had no
experiencewith GUI or event-driven programming. Therefore, we wanted the projed
software to runin a console-based (non-GUI) environment. Of course, this further
restricted the list of pasgble systems, particularly since we dso wanted a system our
students could identify with. For example, the Savant Web Server [1] would med the
language and nan-GUI requirements, but would na be eay for the students to interact
with.

Given ou computing resources, we needed to limit the open-source software options to
systems that would run under Windows 98. Due to the Linux heritage of many open-
source systems, this somewhat restricted ou choices. We foundthat many of the systems
that would run undr Win32required “Unix-like” compil ers and li braries, instead o the
Microsoft Visua C++ IDE our students were used to.

In additi on, the software we dhase had to be large enough to simulate “real world”
software. In arder to overcome the difficulties enumerated in the previous dion, the
software had to be much, much larger than any systems gudents had encourtered to cete.

Finally, we wanted software with very inadequate documentation, in order to further
drive home the importance of documentationto ou students. Via such a “worst case”
introduction to large software systems, students would be @leto gain a persona
appredationfor all kinds of software documentation.

Based onthese criteria, we dhose the SLASH’ EM adventure game [2], a descendant of
the popuar role-playing game Rogue. The game iswrittenin C, will compile under
several different compil ers and architectures (Win32,DOS, Unix, MadOS, and ahers),
and runs in console mode. The game ca aso be cmpiled to runwith VGA graphics
tiles. The distribution sourcewe used came & a4 MB compressed tar file. Oncethe
distribution was uncompressed, there were 271 C source files and 135header files
required to buld the game. Other than inaccurate read-me fil es regarding install ation (see
below), the only real documentationfor our distribution d SLASH'EM was goradic
source @de ommments.

Project activities

During the projed, students had to complete several activities. These adivities were
spread throughout the semester, with due dates that were establi shed in the syllabus on
thefirst day of class In thisway, ou projed thread ran through everything we did in the
class rather than being back-loaded toward the end d the semester. Students completed
the projed in teams of threeor four, with the knowledge that each team wasin dred
competition with the other teams for projed scores.

For thefirst phase of the projed, students had to successully build the SLASH'EM

game. Thiswas no small task, asthe distribution d SLASHEM would na build withou
making several undocumented changes to the system makefil es. Students had to dedde
what changes to make, based onsevera “clues’ in the documentation, and oncompil er
error and warning messages. In addition, we needed to use the freeware djgpp C / C++
compiler [3] to buld the game, and this was the first exposure for many of our studentsto
a ommand-li ne driven compil er (as oppased to the Visual C++ IDE). Thefirst indicaion
that the projed was onthe right tradk was the shock of our students when they discovered
the ten-to-fifteen-minute compil e times for SLASH’EM.

For the next phase of the projed, the students had to produce some initial documentation
for the system in the form of afunction structure dart. Thisforced the students to get
into the source mde and gain at least an initial understanding of where the various
operations of the game were located. Along with the structure dart, the students had to
provide asentence or two describing what they thought ead functionin their structure
chart did.

In the next phase of the project, the students had to find and corred three logic erors,
inserted into the system by the profesor. The students were given written bug reports
describing the symptoms of the logic arors, bu no aher information to help them find
the arors. All threebugs were intended to mimic erorsthat could easily be made by
programmersin the “real world.” The dhanges made to introduce the bugs, and the
symptoms of the bugs, are summarized below.

Thefirst logic eror caused the player’s charader to frequently die when they kicked an
objed in the game. At times during the game, players may need to kick objects (to open a

locked doa, for example), and kicking ahard oljed is suppased to dodamage to the
player. However, this error caused the damage inflicted onthe kicking player to often be
fatal. This error was inserted into the system by changing asingle function cal of thefile
dokick.c (line 966), from

| osehp(rnd(ACURR(A CON) > 15 ? 3 : 5), kickstr(buf),
KI LLED_BY);

to

| osehp(rnd(ACURR(A_ CON) > 15 ? 3 : 51), kickstr(buf),
Kl LLED_BY) ;

The changefrom ‘5’ to ‘51" meant that the player was quite likely to be kill ed by the
damage sustained duing akick.

The secondlogic aror caused every objed the player picked upto be curnted as gold,
regardlessof what the object really was. In namal game play, players would find
wegpors, scrolls, paions, and aher types of obedsto use; this bug turned everything to
gold as oonasit was picked up.This bugwasintroduced by changing line 330 d the
invent.c file from

I f (obj->oclass == GOLD_CLASS)
to
I f (obj->oclass = GOLD_CLASS)

The change from a mmparison to an assgnment caused every objed picked upto
beome gold, and d course caised nocompil e-time erors or warnings.

Thethird logic eror caused ore of the VGA graphics components of the game to update
improperly. At the bottom of the SLASH’ EM screen, there is a status bar refleding the
player’s remaining hit points. This bug prevented the status bar from showing the
player’sreduced hit points, under certain circumstances. The bug was introduced by
changing line 1791 d the hack.c file from

flags.botl = 1; /* Update status bar */
to

flags.botl = 0; /* Update status bar */

Onceagain, asimple typographic eror in the source mde was able to producenaticeeble
flawsin the game, withou causing any compil e-time error or warning messages.

In the last phase of the projed, the students had to extend the game in ways of their own
design, and present their improved games to the dass The size of the SLASHEM game
meant that the students had many different oppatunities for improving the game or
adding new features. The students were told that they were competing with the other
teams during the projed, so that the team with the “coolest” new feaures would receive
the most paints for this portion d the projed.

Educational outcomes

This projed was very valuable for our students, asit all owed them to experience working
with a “real-world” system, rather than with a small toy built during the murse of the
semester.

The students gained experiencein bulding large, compli cated software systems. The
large number of source files and the complicated buld procedures were new experiences
for the students, who previously had only compiled programs consisting of afew source
files. In addition to gaining experiencein the complexities of compili ng large systems,
the large number of source fil es helped ill ustrate the need for a source management and
versioning system. Severa groups, in the processof adding speaal feduresto their
games, introduced fatal logic erors. They had na kept backups of their previous versions
of the game, and so were forced to start over from the initial “clean” sourcefiles. These
instances provided goodinstructional oppatuniti es, to emphasi ze the importance of
source management and versioning.

The students gained experience with the difficulti es of producing documentation for a
large system that ladks any real documentation. The students were forced to dg into the
source @dein order to producethe structure dhart and function descriptions. Through
this adivity, they were ale to get some ideaof the design and goeration d the game.
More importantly, however, they started to redize how much they did na know abou the
system, and hav much more they could have known if adequate, up-to-date
documentation hed been avail able. For example, during our classdiscussons on chta
dictionaries, the students realized howv much of a benefit a data dictionary would have
been to them during the project. Thisred-lifeill ustration d the necessty of adequate
documentation was perhaps the most important learning outcome of this projed.

The students gained experience & maintenance programmers when they had to locate and
fix the bugs planted in the SLASH’EM game. Through their knowledge of the system’s
architedure (gained in the documentation adivity) and through the descriptions of the
bug symptoms, the students had to locate, diagnose, and fix faultsin the system similar to
faults that could easily appear in red-world software.

Finally, students gained more maintenance experience through the improvements they
added to the game. Each groupadded different features, ranging from modificaion d the
rules (characters all owed to ea items other than food), through modificaion o the
interface (new VGA tiles and the &bili ty to start a new game withou returning to the

DOS prompt). Some groups were more successul than athers during this phase. In
particular, groups that put off the addition d new features urtil close to the deadline, or
whotried to dotoo much duing the dl otted time, were unable to get much
acomplished.

Allinal, this projed was very valuable for our students, in that it ill ustrated in a hands-
onmanner many of the mncepts in software engineering that we were formerly only able
to ledure &ou. It's one thing to discussthe importance of documentation, versioning,
source management, etc., in class bu quite another to dscover their importance on your
own through an actual projed.

Lessons learned

We plan to make asimilar open-source projed a permanent part of our software
engineaing course. We have dso added a second,foll ow-on software engineering course
that will allow studentsto pradice afull cycle of software development, after they have
been introduced to the required conceptsin the first course.

Based onthe way we introduced bugs into the SLASH’ EM game, we recogni ze that
industrious gudents could have locaed the bugs by downloading “clean” copies of the
source ®@de from the internet and then using afile compare tod to look for differences
between the dean and bugyy code. For the next projed, we will prevent this problem by
using a search and replace utili ty to add extra whitespace around @rentheses, braces, and
other elementsin the mde. This shoud na change the compilation a operation d the
system, bu will make most of the linesin the buggy code textually different from the
original code.

In the next projed, we will i ntroduce more bugs into the system, so that different bugs
can be asggned to dfferent teams. In thisway, each team will be forced to find and solve
their own bugs. Once al the bugs have been foundand resolved, the teams will be
required to dacument their fixes and dstribute them to the other teams. Thiswill help
improve the ommunicaions ill s of our students.

In addition, in the next projed, we plan to require the teams to implement at least one
improvement to the system based upon®customer” requests, in additionto the
iImprovements the teams implement on their own initiative. In thisway, we will be &leto
move through an entireiteration d the maintenancelife cycle, from analysisto design to
implementation. Thiswill give students more structure and guidance in this phase of the
projed, and will also allow them to experience acomplete, small example of the software
lifecycle.

Our experience with this projed has convinced us that the use of carefully selected open-
source software systems can be an integral part of an urdergraduate software engineering
course. Open-source software projeds all ow students to have amuch more meaningful
software engineering classthan would be posshble with ather types of projects.

References

1. Savant Web Server home page, http://savant.sourceforge.net .
2. SLASH’EM home page, http://slashem.sourceforge.net .
3. djgpp hame page, http://www.delorie.com/djgpp .

Acknowledgements

Thanks are owed to the Doane Information Science and Techndogy Advisory
Committee who first suggested using open-source software in the software engineeing
course.

