
An Abstract Java Class for Device-Independent Speech Output

Thomas E. O’Neil
Computer Science Department

University of North Dakota
oneil@cs.und.edu

Abstract

The Audio Interface Project at the University of North Dakota is dedicated to the
development of a library of software components that facilitate integration of synthesized
speech and other audio effects into software application interfaces. Ideally, the software
components are device independent. This paper describes an abstract class for Java
called AbstractVoice that provides a set of methods to be used for interaction with
common text-to-speech devices. The AbstractVoice methods are device independent.
Speech applications can be written using the methods of AbstractVoice, and concrete
Java classes can be written to implement AbstractVoice for various text-to-speech
hardware and software products.

AbstractVoice can be used as a tool in developing audio interfaces for general
applications. It also serves as an instructional tool for courses in user interface design to
illustrate the use of audio components as an alternative to strictly graphical user
interfaces.

Introduction

While graphical presentation of information still dominates the user interfaces for general
computing applications, research is continuing on the use of speech and other audio
effects. The standard application interface of the future will probably be a mixed-mode
interface – one that integrates graphical, audio, and tactile components. The audio
components may be a mixture of recorded speech, synthesized speech, music, and
various sound effects. This paper describes a tool that will facilitate the incorporation of
synthesized speech into interfaces. Specialized hardware devices that synthesize human
speech have been available for years, and with the rapid improvement in speed and
storage capacity of microcomputers, speech synthesis can now be implemented in
software. Speech synthesis devices typically support text-to-speech translation, so that
the user simply sends text to the device as if it were a printer. The AbstractVoice
component described here is a device-independent speech synthesis object. It provides
methods for the use and control of a voice in application interfaces. The collection of
methods is based on the common characteristics of text-to-speech devices and the general
characteristics of audio devices.

The AbstractVoice object is implemented in Java, as a component of Java’s Abstract
Windowing Toolkit (AWT). The object-oriented paradigm presented by Java is well
suited for development of device independent objects realized as abstract classes. The
abstract classes define methods and fields inherited by all concrete classes derived from
the abstract class. The implementations of the abstract class methods are found in the
concrete classes, not the parent abstract class. Application code can be based on the
specification of the abstract class. Thus the AbstractVoice class can be used in the
development of voice applications. A concrete implementation of AbstractVoice
provides the link between the application software and some specific text-to-speech
device. When the application software is ported from one system to another, a new
implementation of AbstractVoice may be required, but no changes are required in the
application software.

AbstractVoice provides a tool for software development, research, and instruction. It
relates to research literature on auditory interfaces as an example of a synthesized speech
server in the Mercator architecture described by Elizabeth Mynatt (1994). Mercator is a
prototype system for rendering graphical interfaces in audio. The system architecture
includes a Sound Manager that communicates with three servers: a non-speech audio
server, a spatialized sound server, and a synthesized speech server.

 T. V. Raman (1997) developed an auditory computing environment called Emacspeak
based on the Emacs text-editor. This system includes a number of techniques for
implementing an audio desktop including speech-enabled widgets and arrow-key
directional navigational commands. These are combined with facilities that are a
standard part of the editor. Audio components in Emacspeak are integrated into a single
application, and do not provide a toolkit that can be reused in developing other
applications. The device-specific layer is designed for the Dectalk family of synthesizers.

O’Neil (2000) has previously developed auditory output tools that provide general-
purpose audio menu systems. The user controls an application by listening to the audio
output and entering keystrokes in response. The menu components contain device-
specific procedures that would have to be rewritten for different synthesizers. The menu
components will eventually be rewritten to employ the device-independent
AbstractVoice.

The AbstractVoice class described here is not designed for any particular application or
for any specific device. Its functionality is derived from the common characteristics of
various speech devices, such as Doubletalk, Accent, and Dectalk. While any concrete
implementation of the abstract class can add methods based on the unique characteristics
of a particular device, developers can write device-independent voice applications by
employing only those methods defined in the abstract class.

The AbstractVoice Class

Since a voice is a particular kind of audio object, the AbstractVoice class is a special case
of an AbstractAudioDevice. There are a number of control functions that are common to
all audio devices, such as volume and tone settings. For this reason AbstractVoice is
defined to be an extension of the AbstractAudioDevice class. Both of these classes use a
abstract class AbstractAudioDevice extends Class
{
 private int volumelevel; private int volumeDefault;
 private int echolevel; private int echoDefault;
 private int basslevel; private int bassDefault;
 private int treblelevel; private int trebleDefault;

 // Methods for setting device parameters
 public abstract void setVolume(int level);
 public abstract void setVolume(float percentage);
 public abstract void increaseVolume();
 public abstract void increaseVolume(float percentage);
 public abstract void decreaseVolume();
 public abstract void decreaseVolume(float percentage);

 // .
 // . Similar methods for setting Echo, Bass, and Treble
 // .

 // Methods for default settings
 public abstract void setDefaultVolume(int level);
 public abstract void setDefaultVolume(float percentage);
 public abstract void resetVolume();

 // .
 // . Similar methods for Echo, Bass, and Treble defaults
 // .

Figure 1. A partial listing of the AbstractAudioDevice class.

supporting class called DiscreteRange that provides values for settings in any discre
range that is a subrange of the integers. AbstractAudioDevice, A

te
bstractVoice, and

iscreteRange are illustrated in Figures 1, 2, and 3 respectively.

evice, and methods for determining what has or
as not yet been spoken by the device.

d. A

abstract class AbstractVoice extends AbstractAudioDevice
{
 static boolean initialized = false;
 private int speedlevel; private int speedDefault;
 private int pitchlevel; private int pitch Default;
 private int timbrelevel; private int timbreDefault;
 private int intonationlevel; private int intonationDefault;
 private LinkedList wordlist;

 public AbstractVoice()
 {
 if (!initialized)
 {
 initDevice();
 initialized = true;
 }
 }
 // Methods for initializing, interrupting, and restarting
 public abstract void initDevice();
 public abstract void reset();
 public abstract void flush();
 public abstract void pause();
 public abstract void continue();

 // .
 // . Methods for setting speed, pitch, timbre, intonation
 // . similar to those in AbstractAudioDevice

 // Methods for sending data to be spoken to the device
 public abstract int say(String phrase);
 public abstract int emphasize(String phrase);
 public abstract int spell(String phrase);
 public abstract int proofRead(String phrase);
 public abstract int pronounce(String phonemes);

 // Methods used to control audio interactions
 public abstract boolean isSpoken(int textID);
 public abstract String lastWordSpoken();
}

Figure 2. A partial listing of the AbstractVoice class.

D

The class AbstractVoice has methods for general device management such as
initialization and resetting, methods for setting control parameters such as volume and
pitch, methods for sending data to the d
h

The AbstractVoice class is designed to allow multiple distinct voices to share the same
physical device. Initialization of the device takes place when the first voice is create
class-wide boolean variable is used to suppress initialization when more voices are

created. Initialization sets any system-level parameters necessary for communication
with the device, flushes the device buffer, and sets all control parameters to their factory

efaults.

.

n be

ng
ould result in monotone speech. A high

etting might result in exaggerated prosody.

 With

t
actory

efault. The resetX() method restores control parameter X to its current default.

s,

n parameters. Also, it is invoked as an
stance method, not as a class-wide method.

 the

includes a field to indicate whether or not the word has been spoken by the
ynthesizer.

ake it possible to
terleave the speech of several voices that share the same synthesizer.

d

The abstract class provides methods for control of several parameters. Settings for
volume, echo (reverberation), bass, and treble are common to most audio devices,
whether they produce music, sound effects, or speech. For that reason, the fields and
methods related to these parameters are defined in the AbstractAudioDevice class
Additional settings for parameters specific to speech synthesis are defined in the
AbstractVoice class. These include speed, pitch, timbre, and intonation. Controlling the
speed of the voice is essential for efficiency and intelligibility. Variations in pitch ca
used to define distinct voices and to implement emphasis for certain words. Timbre
refers to the general quality of the voice. Speech synthesizers give varying levels of
control over voice quality. Dectalk has several device parameters dedicated to this, while
Doubletalk has only one. Intonation refers to the amount of tone variation that is used in
speaking sentences. Text-to-speech devices follow some rules of prosody when speaki
sentences. A setting of zero for intonation w
s

Each control parameter X has a similar set of methods: setX(int level), setX(float
percentage), increaseX(int steps), increaseX(float percentage), decreaseX(int steps),
decreaseX(float percentage), setDefaultX(int level), setDefaultX(float percentage), and
resetX(). The set, increase, and decrease methods take an integer value or a floating
point percentage as a parameter. With the set methods, the integer parameter is a fixed
value in the control range of X, and the float parameter is a percentage of the range.
the increase and decrease methods, the integer parameter is the number of steps to
increment or decrement the setting using the units of the range of X, while the float
parameter is an increment or decrement expressed as a percentage of the range. A curren
default value is kept for each control parameter. This may or may not match the f
d

The reset() method for the voice object is similar to the initDevice() method, except that
it restores the control parameters to the locally defined defaults, not the factory default
and it does not reset the system communicatio
in

The flush() method stops speech and empties the device buffer and the local buffer of
voice object. The local buffer is implemented as a linked list of word records. Each
word record
s

The pause() method stops speech and empties the device buffer, but it does not empty
the local buffer. The resume() method resets the control parameters to the local defaults
and refreshes the device buffer from the local buffer. These methods m
in

There are five methods that transmit data to the synthesizer. All of these take a sing
string parameter and return an identifier to the client application. The say(phrase)
method causes the device to speak the phrase using all the current control settings. The
emphasize(phrase) method causes the synthesizer to speak the phrase emphatically, tha
is, with higher pitch and volume. The spell(phrase) method causes the synthesizer to
spell all the words in the phrase letter-by-letter. Synthesizers typically have a “spell”
mode that can be used for this purpose. The proofRead(phrase) method speaks the w
of the phrase in monotone and explicitly speaks each punctuation mark. Normall
punctuation is used to affect intonation, but it is not explicitly spoken. With the
pronounce(phonemes) method, the parameter is a string representation of a sequence of
phonemes, not a string of text. Most synthesizers provide a mode in which the input to
the synthesizer is assu

class DiscreteRange
{
 int minimum;
 int maximum;
 public DiscreteRange(int min, int max)
 {
 minimum = min;
 maximum = max;
 }
 public int getMinimum()
 {
 return minimum;
 }
 public int getMaximum()
 {
 return maximum;
 }
 public int getMiddle()
 {
 return (minimum+maximum)/2;
 }
 public int getPercentage(float percent)
 {
 return Math.round((float)(maximum - minimum) * percent);
 }
}

Figure 3. The DiscreteRange Class

le

t

ords
y,

med to be a representation of phonemes. This representation is not
ecessarily standard.

g

invoked data transmission method. The lastWordSpoken() method can be invoked by a

n

Finally, AbstractVoice provides two methods that allow client programs to control an
audio interaction. Writing a speech application involves some real-time programming.
It takes much longer for the synthesizer to speak a buffer-full of data than it takes to fill
the buffer. Some applications may require the user to press keys in response to hearin
spoken words. AbstractVoice has to provide some way for a client program to know
when words are spoken. The isSpoken(id) method can be used by the client program to
check whether a phrase previously given to the voice has actually been spoken. The
parameter to this method is an integer text identifier that was returned by the previously

client program to get a string representation of the word that was most recently spoken by
the synthesizer.

Some Implementation Notes for the Doubletalk LT Synthesizer

Much of the work of implementing AbstractVoice is defining the ranges for the control
parameters and translating the method calls to control sequences for the physical device.
To set the speed for a Doubletalk synthesizer (RC Systems, 1995), it is necessary to send
it the character sequence “nS”, where n is a digit in 0..9. The implementing class would
contain a statement “speedRange = new DiscreteRange(0, 9)” in its constructor. Client
programs would use the methods of DiscreteRange to create parameters for calls to the
setSpeed methods, e.g. “setSpeed(speedRange.getMaximum())”. The setSpeed method
would produce the appropriate string, in this case “9S”, and transmit it to the synthesizer.

The Doubletalk LT model is an external synthesizer that connects to a microcomputer
through a serial port. The initialization routine has to configure the port appropriately for
the synthesizer, since the system defaults for serial ports are intended for external
monitors, not synthesizers. Handshaking is always a critical setting for successful
communication. On Unix systems, the initialization routine uses the stty command to
configure the port.

The most challenging task is the implementation of the isSpoken(id) and
lastWordSpoken() methods. Doubletalk has a mechanism whereby integer markers in
the text stream are sent back to the host computer when they are removed from the device
buffer. These markers must be transmitted to the synthesizer between words and must be
read from the serial port to detect when the surrounding words have been spoken. The
implementation must generate identifiers and markers for words and phrases and store
them in a local buffer as they are transmitted to the synthesizer. When the
implementation class finds a marker coming back from the synthesizer, it updates the
local buffer to indicate that the corresponding word or phrase has been spoken.

A full implementation of the Doubletalk synthesizer would require the addition of
methods not found in AbstractVoice. Doubletalk, for instance, has a dictionary of words
and corresponding phoneme representations that can be modified by the user of the
device. AbstractVoice does not have methods that allow modification of a dictionary, but
the concrete implementation of AbstractVoice for Doubletalk could include additional
methods for this purpose.

Conclusion

The AbstractVoice class cannot hope to encapsulate all the functionality found in all
speech synthesizers. It can, however, provide a set of common methods for development
of device-independent audio applications. The abstract class described here will continue
to evolve as it is used for application development with different devices. As defined

above, is robust enough to facilitate the development of a large collection of audio
components that will enhance the use of audio in the design of application interfaces. In
the instructional setting, it opens doors to experimentation with multi-modal interfaces in
courses on GUI design and human/computer interaction.

References

Mynatt, E. (1994). Auditory presentation of graphical user interfaces. In Kramer, G.
(ed.), Auditory display: sonification, audification, and auditory interfaces (pp. 533-555).
Reading, MA: Addison-Wesley.

O’Neil, T. E. (2000). Adding Some Audio to the Visual Component Library.
Proceedings of the Midwest Instruction and Computing Symposium (MICS ’00). St. Paul,
MN.

RC Systems, Inc. (1995). Doubletalk PC/LT User’s Manual. Everett, WA.

Raman, T. (1997). Auditory user interfaces: toward the speaking computer. Boston:
Kluwer Academic Publishers.

	Abstract
	Introduction
	While graphical presentation of information still dominates the user interfaces for general computing applications, research is continuing on the use of speech and other audio effects. The standard application interface of the future will probably be a
	References

