

The ODD turtles pause for two seconds on the four corner ORANGE squares. How far did they move to reach ORANGE?
After the 2 second delay (wait 2), the ODD turtles 1, 3,5 and 7 moved out the additional distance, with their pd PENS DOWN again. They are now on the FOUR CORNERs of the PURPLE squares. What is the total distance (from 0,0 home) they needed to travel and they have travelled $\underline{\mathrm{fd}}$ forward to reach the PURPLE squares?

Here is the code from test one, but with the PEN-SIZE made 4 times as thick and the color of the turtles set to black. Otherwise, it is exactly the same code as the show the output of the NetLogo turtles on test \#1.

Extra statements are: colorPatchesAsTarget to get the cool multiple colored patches, set pen-size 4, and set color black.

MysteryDistance - NetLogo \{C:\1025\}

\square	回	X

globals [mysteryDistance]
TO goToSquare
ca
colorPatchesAsTarget
cro 8
ask turtles
[
set pen-size 4 set color black fd 2 pd fd 3
pu
]

$$
\mathrm{fd} 2
$$

wait 2
ask turtles
[
pd
set mysteryDistance
if remainder who $2=1$ fd mysteryDistance
]
]
END
TO colorPatchesAsTarget
ask patches
[
1 III

The code after the WAIT 2 is the worksheet problem. Remember to look for a right triangle so you can use your Pythagorean theorem.

The NetLogo code for obtaining the Square Root is sqrt number.

For example, sqrt 144 would be 12.

For another example, fd sqrt 100 would cause turtles to move forward 10 units, since the square root of 100 is 10 .
"the Pythagorean theorem—or Pythagoras' theorem-is a relation in Euclidean geometry among the three sides of a right triangle. It states that the square of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares of the other two sides."
... from the Wikipedia.org/wiki link given above.
wiki/Pythagorean_theorem
a relation among the 3 sides...
keys: find a right triangle to get an angle on the problem, the right perspective. Figure out which parts are known and which you need to know.

This handout should prove useful in helping solve 1.e. on the TestOneLogofall13worksheet.pdf assignment. See also Test One, Page 1, question \#1 show the output question from the October $21^{\text {st }}, 2013$ midterm exam.

