Programs and Programming Languages

- CONCEPT: A program is a set of instructions a computer follows in order to perform
a task. A programming language is a special language used to write
computer programs.

What Is a Program? f '

Computers are designed to follow instructions. A computer program is a set of instruc-
tions that tells the computer how to solve a problem or perform a task. For example, sup-
pose we want the computer to calculate someone’s gross pay. Here is a list of things the
computer should do:

1. Display a message on the screen asking “How many hours did you work?”

2. Wait for the user to enter the number of hours worked. Once the user enters a
number, store it in memory.

3. Display a message on the screen asking “How much do you get paid per hour?”

4. Wait for the user to enter an hourly pay rate. Once the user enters a numbeg, store it in
memory. '

5. Multiply the number of hours by the amount paid per hour, and store the result in
memory.

6. Display a message on the screen that tells the amount of money earned. The message
must include the result of the calculation petformed in Step 5.

Collectively, these instructions are called an algorithm. An algorithm is a set of well-
defined steps for performing a task or solving a problem. Notice these steps are sequen-
tially ordered. Step 1 should be performed before Step 2, and so forth. It'is important that
these instructions be performed in their proper sequence.

Figure 1-9
.
is e |-
. \ 1. Clearly define what the program is to do.
1 // Ihis p rogram calculates the user's pay. 2. Visualize the program running on the computer.
2 #ir.lc lude <iostream> 3. Use design tools such as a hierarchy chart, flowcharts,
3 using namespace std; '5? or pseudocode to create a model of the program.
i 4 \ , h K) 4. Check the model for logical errors.
. 3 iat main() k 5. Type the code, save it, and compils it.
& A 6. Correct any errors found during compilation. Repeat
! double hours, rate, pay; Steps 5 and 6 as many times as necessary.
8 . 7. Run the program with test data for input.
2 // Get the number of hours. worked. ;, 8. Correct any errors found while running the program.
1o cc.mt << "How many hours did you work? *; Repeat Steps 5 through 8 as many times as necessary.
E cin >> hours; 9. Validate the results of the program. c
13 // Get the hourly pay rate. fg ! T
14 cout << "How much do you get paid per hour? "; i/
i15 cin »> rate;
16
17 // Caleulate the pay.
18 pay = hours * rate;
;19
20 // Display the pay.
21 cout << "You have earned §" << pay << endl;
22 return 0;

The steps listed in Figure 1-9 emphasize the importance of planning. Just as there are good |
ways and bad ways to paint a house, there are good ways and bad ways to create a pro-
gram. A good program always begins with planning.

With the pay-calculating program as our example, let’s look at each of the steps in more
detail. : -

[
@ Clearly define what the program is to do. @0 z 7

This step requires that you identify the purpose of the program, the information that is to
be input, the processing that is to take place, and the desired output. Let’s examine each of
these requirements for the example program:

Purpose To calculate the user’s gross pay.
Input Number of hours worked, hourly pay rate.
Process Multiply number of hours worked by hourly pay rate. The result is the

user’s gross pay.
Qutput Display a message indicating the user’s gross pay.
@ Visualize the program running on the computer.

Before you create a program on the computer, you should first create it in your mind. Step
2 is the visualization of the program. Try to imagine what the computer screen looks like

“while the program is running. If it helps, draw pictures of the screen, with sample input
and output, at various points in the program. For instance, here is the screen produced by
the pay-calculating program:

How many hours did you work? 10
How much do you get paid per hour? 15
You have earned $150

In this step, you must put yourself in the shoes of the user. What messages should the pro-
gram display? What questions should it ask? By addressing these concerns, you will have
already determined most of the program’s output.

Predict the Result

Questions 33-35 are programs expressed as English statements. What would each display
on the screen if they were actual programs?

33, The variable x starts with the value 0.
The variable y starts with the value 5.
Add 1tox.

Add 1tov.
Add x and y, and store the result in y.
Display the value in ¥ on the screen.

34. The variable j starts with the value 10.
The variable k starts with the value 2.
The variable 1 starts with the value 4.
Store the value of j times k in J.

=
=
H
4
]
]
]
o
u
-
o
]
H
o
o]
X}
B
A
v
P
j=]
[o]
&)

@
g
o
=
g
[0}
—
&b
O .
g
2
-]
el
=
-
B
g
o
5]
g -
n
=
'ﬁ '
"
©
[7:] H
I
Ho
@
=
o
N
_g ;
B
8
g
9
g .
i g
Store the value of k times 1 in 1. B 8.
Add § and 1, and store the result in k. 2 % q ;
Display the value in k on the screen. -‘:4 o :j g
sl) + B2 D =
35, The variable a starts with the value 1. e OB . &
The variable b starts with the value 10. B o) B o
The variable ¢ starts with the value 100. T - I - B~ £ g E_U
The variable x starts with the value 0. : E L E ; 'g % 5 8
Store the value of ¢ times 3 in x. R B H 5 g
) - P :
Add the value of b times 6 to the value already in =. gl S IEE 5. . *? coe
Add the value of a times 5 to the value already in x. . 5.2
: ; B - MmN W oo I
Display the value in x on the screen. C L

ﬂ“-.‘
W
i

o

g
o
e
iy

[)]

=

.%[

M :

o
B

Mo
P

Figure 1-9 | ‘ Cad

—t

Clearly define what the program is to do..

Visualize the program running on the computer.

3. Use design tools such as a hierarchy chart, flowcharts,

- or pseudocode to create a model of the program.

4, Check the model for logical errors.

5. Type the code, save it, and compile it.

6. Correct any errors found during compilation. Repeat
Steps 5 and 6 as many times as necessary.

7. Run the program with test data for input.

8. Correct any errors found while running the program.
Repeat Steps 5 through 8 as many times as necessary.

9. Validate the resuits of the program.

g

" Program 2-1
/! A simple C++ program
#include <iostream>
using namespace std;

At i T a e D N e 1

int main()

{
cout << "Programming is great funl!";
return 0;

O 0~ O W N e

}

The output of the program is shown below.

