void print_square(double x)

{
cout << "the square of " << x << " |s " << square(x) << "\n";
}
int main()
{
print_square(1.234); Il print: the square of 1.234 is 1.52276
}

A “return type™ void indicates that a function does not return a value.

2.2.2 Types, Variables, and Arithmetic

Every name and every expression has a type that determines the operations that may be performed

on it. For example, the declaration
intinch;

specifies that inch is of type int; that is, inch is an integer variable.

A declaration is a statement that introduces a name into the program. It specifies a type for the

named entity:
* A nype defines a set of possible values and a set of operations (for an object).
* Anobject is some memory that holds a value of some type.
* A value is a set of bits interpreted according to a type.
* A variable is a named object.
C++ offers a variety of fundamental types. For example:

bool Il Boolean, possible values are true and false

char Il character, for example, 'a’, 'z', and '9'

int Il integer, for example, -213, 42, and 1066

double /I double-precision floating-point number, for example, 3.14 and 299793.0

xX+y Il plus

+X Il unary plus
x-y Il minus

X Il unary minus
x+y Il multiply

xly 1l divide

X%y Il remainder (modulus) for integers
So can the comparison operators:

x==y Il equal

x!=y 1l not equal

X<y Il less than

x>y Il greater than

x<=y 1l less than or equal
x>=y Il greater than or equal

In assignments and in arithmetic operations, C++ performs all meaningful conversions (§10.5.3)
between the basic types so that they can be mixed freely:

void some_function() // function that doesn’t return a value
{
double d = 2.2; Il initialize floating-point number
inti=7; I initialize integer
d=d+; Il assign sum to d
i=d=i; Il assign product to i (truncating the double d*i to an int)

