
Introduction to Functions

Intro to Computer Science

CS1510

Dr. Sarah Diesburg



Review

 So far, most of our programs have retrieved 

data from the keyboard and written data to 

the screen

 Data must be entered on every program run

 Programs have no way to write permanent output

 Text files provide convenient input/output 

storage

 e.g. programs can read configuration data or input 

files to process, and can write output to files



Question #1

 A program is designed to retrieve some data 
from a file, process it, and output the revised 
data to another file. Which of the following 
functions/methods will not be called in the 
program?

 A. open

 B. A loop or method for reading (e.g. read)

 C. write

 D. close

 E. All should be called



Review

 Several methods for reading text from files:

 readline: reads and returns next line; returns 

empty string at end-of-file

 read: reads the entire file into one string

 readlines: reads the entire file into a list of strings

 All of these leave a trailing '\n' character at 

the end of each line.



Review

 A file is a sequence of lines.  Can be read 
with a for-loop

f = open(‘data.txt‘,”r”)

for line in f:

print(line.strip())

 …or using a while-loop:
f = open(‘data.txt‘,”r”)

line = f.readline()

while line:

print(line.strip())

line = f.readline()



Question #2 – What is the last thing 

printed?

data.txt

Reading Assignments 

#Each line lists the reading

#assignment for that date

Sep, 17, Section 1.1-1.3

Sep, 19, Section 1.4-1.8

Sep, 21, Section 2.1-2.4

program

line = f.readline()

line = f.readline()

while line.startswith('#'):

line = f.readline()

print(f.readline())



Question #3 – What is the last thing 

printed?

data.txt

Reading Assignments

#Each line lists the reading

#assignment for that date

Sep, 17, Section 1.1-1.3

Sep, 19, Section 1.4-1.8

Sep, 21, Section 2.1-2.4

program

line = f.readline()

line = f.readline()

while line.startswith('#'):

line = f.readline()

print( line )



What is a Function?



Functions

 From mathematics we know that functions 

perform some operation and return one

value.

 They “encapsulate” the performance of some 

particular operation, so it can be used by 

others (for example, the len() function).



Why Have Them?

 Abstraction of an operation

 Reuse: once written, use again

 Sharing: if tested, others can use

 Security: if well tested, then secure for reuse

 Simplify code: more readable

 Support divide-and-conquer strategy



Mathematical Notation

 Consider a function which converts 

temperatures in Celsius to temperatures in 

Fahrenheit:

 Formula:   F = C * 1.8 + 32.0

 Functional notation: F = celsisus2Fahrenheit(C)  

where 

celsius2Fahrenheit(C) = C*1.8 + 32.0



Python Invocation

 Math: F= celsius2Fahrenheit(C) 

 Python, the invocation is much the same

F = celsius2Fahrenheit(C)                                                                     

Terminology: argument “C”



Function Definition

 Math: g(C) = C*1.8 + 32.0

 Python                                               

def celsius2Fahrenheit (C):                                                                       

return C*1.8 + 32.0                                

 Terminology: parameter “C”





Return Statement

 The return statement indicates the value that 

is returned by the function.

 The statement is optional (the function can 

return nothing). If no return, the function is 

often called a procedure.



Code Listing 6.1

 Temp Convert



Code Listing 6.1

# Temperature conversion

def celsius2fahrenheit(celsius):

""" Convert Celsius to Fahrenheit."""

return celsius*1.8 + 32



Triple Quoted String in Function

 A triple quoted string just after the def is 

called a docstring

 docstring is documentation of the function’s 

purpose, to be used by other tools to tell the 

user what the function is used for.



Operation

def celsius2Fahrenheit (celsius):

return celsius*1.8 + 32.0

F = celsius2Fahrenheit(C) 
1. Call copies argument C 

to parameter celsius 

2. Control transfers to 

function 

“celsius2Farenheit”



Operation (con’t)

3. Expression in 

celsius2Farenheit is 

evaluated

4. Value of 

expression is 

returned to the 

invoker

F = celsius2Fahrenheit(C) 

def celsius2Fahrenheit (celsius):

return celsius*1.8 + 32.0





Code Listing 6.3

 Implement len



Code Listing 6.3

def length(S):

"""Return the length of S."""

count = 0

for s in S:

count += 1

return count



Code Listing 6.4

 Count Letters in String



Check Membership in lowercase

 import string

 use string.lowercase, string of  lowercase

 ‘abcdefghijklmnopqrstuvwxyz’

 check if each letter is a member (using the in

operator) of string.lowercase



Code Listing 6.4

import string

def letterCount(S):

"""Return the count of letters in S."""

count = 0

for s in S:

if s.lower() in string.ascii_lowercase:

count += 1

return count



How to Write a Function

 Does one thing. If it does too many things, it 

should be broken down into multiple functions 

(refactored).

 Readable.  How often should we say this? If 

you write it, it should be readable.

 Reusable. If it does one thing well, then when 

a similar situation (in another program) 

occurs, use it there as well.



More on Functions

 Complete. A function should check for all the 

cases where it might be invoked. Check for 

potential errors.

 Not too long. Kind of synonymous with “does 

one thing”. Use it as a measure of doing too 

much.



Procedures

 Functions that have no return statements are 

often called procedures.

 Procedures are used to perform some duty 

(print output, store a file, etc.)

 Remember, return is not required.



Multiple Returns in a Function

 A function can have multiple return 

statements.

 Remember, the first return statement 

executed ends the function.

 Multiple returns can be confusing to the 

reader and should be used judiciously.


