3.5.4.3. Creating coding variables/factors @

A coding variable (also known as a grouping variable or factor) is a variable that uses num-
bers to represent different groups of data. As such, it is a numeric variable, but these num-
bers represent names (i.e., it is a nominal variable). These groups of data could be levels
of a treatment variable in an experiment, different groups of people (men or women, an

experimental group or a control group, ethnic groups, etc.), different geographic locations,

different organizations, etc. .

In experiments, coding variables represent independent variables that have been mea-
sured between groups (i.e., different participants were assigned to different groups). If you
were to run an experiment with one group of participants in an experimental condition
and a different group of participants in a control group, you might assign the experimental
group a code of 1 and the control group a code of 0. When you come to put the data into
R you would create a variable (which you might call group) and type in the value 1 for
any participants in the experimental group, and 0 for any participant in the control group.
These codes tell R that all of the cases that have been assigned the value 1 should be treated
as belonging to the same group, and likewise for the cases assigned the value 0. In situations

‘other than experiments, you might simply use codes to distinguish naturally occurring
groups of people {e.g., you might giw?e students a code of 1 and lecturers a code of 0). These
codes are completely arbitrary; for the sake of convention people typically use 0, 1, 2, 3,
etc., but in practice you could have a code of 495 if you were feeling particularly arbitrary.

We have a coding variable in our data: the one describing whether a person was a lec-
turer or student. To create this coding variable, we follow the steps for creating a normal
variable, but we also have to tell R that the variable is a coding variable/factor and which
numeric codes have been assigned to which groups.

First, we can enter the data and then worry about turning these data into a coding vari-
able. In our data we have five lecturers (who we will code with 1) and five students (who
we will code with 2). As such, we need to enter a series of 1s and 2s into our new variable,
which we’ll call job. The way the data are laid out in Table 3.6 we have the five lecturers
followed by the five students, so we can enter the data as:

job<-c(1,1,1,1,1,2,2,2,2,2)

In situations like this, in which all cases in the same group are grouped together in the
data file, we could do the same thing more quickly using the rep() function. This function
takes the general form of rep(number to repeat, how many repetitions). As such, rep(1,
5) will repeat the number 1 five times. Therefore, we could generate our job variable as
follows:

job<-cCrep(l, 5),rep(2, 5))

Whichever method you use the end results is the same:
job |

(11 11111222232

To turn this variable into a factor, we use the factor() function. This function takes the
general form:

factor(variable, levels.= c(x,y, . Z), labels = c("labell”, "label2",
"label3")) ‘ '

This looks a bit scary, but it’s not too bad really. Let’s break it down: factor(variableName)
is all you really need to create the factor — in our case factor(job) would do the trick.
However, we need to tell R which values we have used to denote different groups and
we do this with levels = ¢(1,2,3,4, ...); as usual we use the ¢() function to list the values
we have used. If we have used a regular series such as 1, 2, 3, 4 we can abbreviate this




as ¢(1:4), where the colon simply means ‘all the values between’; so, ¢(1:4} is the same
as ¢(1,2,3,4) and c(0:6) is the same as ¢(0,1,2,3,4,5,6). In our case, we used 1 and 2 to
denote the two groups, so we could specify this as ¢(1:2) or ¢(1,2}). The final step is to
assign labels to these levels using labels = c(“label”, ...). Again, we use ¢() to list the labels
that we wish to assign. You must list these labels in the same order as your numeric levels,

and you need to make sure you have provided a label for each level. In our case, 1 cor-

responds to lecturers and 2 to students, so we would want to specify labels of “Lecturer”
and “Student”. As such, we could write levels = c(“Lecturers”, “Students”). If we put all
of this together we get this command, which we can execute to transform job into a cod-
ing variable:

job<-factor(job, levels = c(1:2), labels = c{"Lecturer™, "Student"))

Having converted job to a factor, R will treat it as a nominal variable. A final way to genes-
ate factors is to use the gl() function — the ‘gl’ stands for general (factor) levels. This func-
tion takes the general form:  «

newFactor<-gl(number of Tlevels, cases in each level, total cases, labels =
c("labell”, "label2"..)D

£

which creates a factor variable called newFactor; you specify the number of levels or groups
of the factor, how many cases are in each level/group, optionally the total number of cases
(the default is to multiply the number of groups by the number of cases per group), and
you can also use the labels option to list names for each level/group. We could generate the
variable job as follows:

job<-g1(2, 5, labels = c("Lecturer”, "Student"))

The end result is a fully-fledged coding variable {or factor):

{1] Lecturer Lecturer Lecturer Lecturer Lecturer Student Student Student
Student Student

With any factor variable you can see the factor levels and their order by using the levels()
fanction, in which you enter the name of the factor. So, to see the levels of our variable job
we could execute:

levels(job)

which will produce this output:
[1} “*Lecturer” *“Student”

In other words, we know that the variable job has two levels and they are (in this order)
Lecturer and Student. We can also use this function to set the levels of a variable, For example,
imagine we wanted these levels to be called Medical Lecturer and Medical Student, we
could execute: ' :

1evels(job)<~é("Medical Lecturer", "Medical Student™)

This command will rename the levels associated with the variable job (note, the new names
are entered as text with speech marks, and are wrapped up in the ¢() function). You can also
use this function to reorder the levels of a factor — see R’s Souls’ Tip 3.13.

This example should clarify why in experimental research grouping variables are used
for variables that have been measured between participants: because by using a coding
variable it is impossible for a participant to belong to more than one group. This situation
should occur in a between-group design (i.e., a participant should not be tested in both
the experimental and the control group), However, in repeated-measures designs (within
subjects) each participant is tested in every condition and so we would not use this sort of
coding variable (because each participant does take part in every experimental condition)




Having spent hours typing in data, you might want to save it. As with importing data,
you can export data from R in a variety of formats. Again, for the sake of flexibility we
recommend exporting to tab-delimited text or CSV (see Rs Souls’ Tip 3.11) because these
formats can be imported easily into a variety of different software packages (Excel, SPSS,
SAS, STATA, etc.). To save data as a tab-delimited file, we use the write.table() command
and for a CSV we can use write.csv().

The write.table() command takes the general form:

write.table(dataﬁame, "Filename.txt"”, sep="\t", row.names = FALSL)

We replace dataframe with the name of the dataframe that we would like to save and
“Filename.txt” with the name of the file.” The command sep="" sets the character to be
used to separate data values: whatever you place between the “” will be used to separate
data values. As such, if we want to create a CSV file we could write sep = “,” (which tells
R to separate values with a comma), but to create a tab-delimited text file we would write
sep = “\t” (where we have written \t between quotes, which represents the tab key), and
we could also create a space-delimited text file by using sep = “ * (note that there is a space
between the quotes). Finally, row.names = FALSE just prevents R from exporting a column
of row numbers (the reason for preventing this is because R does not name this column so
it throws the variable names out of sync). Earlier on we created a dataframe called metal-
lica. To export this dataframe to a tab-delimited text file called Metallica Data.txt, we
would execute this command:

write.table(metallica, "Metallica Data.txt", sep="\t", row.names = FALSE)
The write.csv() command takes the general form:
write.csv(dataframe, "Filename.csv™)

As you can see, it is much the same as the write.table() function. In fact, it is the write,
table() function but with sep = “,” as the default.? So, to save the metallica dataframe as a
CSV file we can execute:

write.csv(metallica, "Metallica Data.csv")

3.9. Manlpulatlng data ®

Sometimes (especially with large dataframes) you might want to select only a small portion
of your data. This could mean choosing particular variables, or selecting particular cases.
One way to achieve this goal is to create a new dataframe that contains only the variables
or cases that you want. To select cases, we can execute the general command:

newDotaframe <- oldDataframe[rows, columns]

7 Remember that if you have not set a working directory during your session then this filename will need to in-
clude the full location information. For example, “C:/Users/Andy F/Documents/Data/R Book Examples/Filename.
txt” or “~/Documents/Data/R Book Examples/Filename.txt” in MacOS. Hopefully, it is becoming ever clearer
why setting the working directory is a good thing to-do.

8 If you live in certain parts of western Europe, you might want to use write.csv2() instead which outputs the file
in the format conventional for that part of the wosld: it uses °;” to separate values, and *,” instead of *.” to represent
the decimal point.
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This command creates a new dataframe (called newDataframe) that contains the specified
rows and columns from the old dataframe (called oldDataframe). Let’s remurn to our lec-
turer data (in the dataframe that we created earlier called lecturerData); imagine that we
wanted to look only at the variables that reflect some aspect of their personality (for exam-
ple, alcohol intake, number of friends, and neuroticism). We can credte a new dataframe

(lecturerPersonality) that contains only these three variables by executing this command:
lecturerPersonality <- lecturerDatal, c("friends", "alcohol", “neurotic”)]

Note first that we have not specified rows (there is nothing before the comma); this means
that all rows will be selected. Note also that we have specified columns as a list of variables
with each variable placed in quotes (be careful to spell them exactly as they are in the
original dataframe); because we want several variables, we put them in a list using the ¢()
function. If you look at the contents of the new dataframe you’ll see that it now contains
only the three variables that we specified:

» lacturerPersonality

friends alcchol neurotic
1 5 10 10
2 2 15 17
3 0 20 14
4 4 5 13
5 1 30 21
6 10 25 7
7 12 20 13
8 15 1e 9
g 12 17 14
1.0 17 18 i3

Similarly, we can sclect specific cases of data by specifying an instruction for rows in
the general function. This is done using a logical argument based on one of the operators
fisted in Table 3.5. For example, let’s imagine that we wanted to keep all of the variables,
but look only at the lecturers’ data. We could do this by creating a new dataframe (lecturer
Only) by executing this command: '

lecturerOnly <- lecturerbata[job=="Lecturer” |

Note that we have not specified colummns (there is nothing after the comma); this means
chat all variables will be selected. However, we have specified rows using the condition job
— — “Tecturer”. Remember that the ‘==’ means ‘equal to’, so we have basically asked R

to select any rows for which the variable job is exactly equal to the word ‘Lecturer’ (spelt

exactly as we have): The new dataframe contains only the lecturers’ data:

> lecturerOnly

Name DoB job friends alcchol income neurotic
1 Ben 1977-07-03 Lecturer 5 10 20000 i0
2 Martin 1969-05-24 Lecturer 2 15 40000 17
3 Andy 1973-06-21 Lecturer 0 20 35000 14
4 Paul 1970-07-16 Lecturer 4 5 22000 13
5 @raham 1949-10-10 Lecturer 1 30 50000 21

We can be really cunning and specify both rows and columms. Ifnagine that we wanted
to select the personality variables but only for people who drink more than 10 units of
alcohol. We could do this by executing:

alcoholPersonality <- lecturerDatalalcohol > 10, c("friends", "alcohol®,
"neurotic")]




How do|l dréw agraph
of the relationship between
two variables?

We potentially have a problem of overplotting because there were a limited number of
responses that people could give (notice that the data points fall along horizontal lines that
represent cach of the five possible ratings). To avoid this overplotting we could use the
position option to add jitter: : A

~ graph + geom_point{aes(colour = Rating Type), position = "jitter™)

Notice that the command is the same as before; we have just added position = [jitter”.

‘The results are shown in the bottom left panei of Figure 4.11; the dots are no longer in

horizontal lines because a random value has been added to them to spread them around
the actual value. It should be clear that many of the data points were sitting on top of each
other in the previous plot. '

Finally, if we wanted to differentiate rating types by their shape rather than using a
colour, we could change the colour aesthetic to be the shape aesthetic:

~graph + geom_point(ues(shape = Rating_Type), position = “jitter")

Note how we have literally just changed colour = Rating_Type to shape = Rating Type.
'The resulting graph in the bottom right panel of Figure 4.11 is the same as before except
that the different types of ratings are now displayed using different shapes rather than dif-
ferent colours.

This very rapid tutorial has hopefully demonstrated how geoms and aesthetics work
together to create graphs. As we now turn to look at specific kinds of graphs, you should
hopefully have everything you need to make sense of how these graphs are created.

ps. the .sca_tter”plot @

Sometimes we need to look at the relationships between variables. A scat-
terplot is a graph that plots each person’s score on one variable against their
score on another. A scatterplot tells us several things about the data, such
as whether there seems to be a relationship between the variables, what
kind of relationship it is and whether any cases are markedly different from
the others. We saw earlier that a case that differs substantially from the
general trend of the data is known as an outlier and such cases can severely
bias statistical procedures (see Jane Superbrain Box 4.1 and section 7.7.1.1
for more detail). We can use a scatterplot to show us if any cases look like
outliers.

Simple scatterplot ©

This type of scatterplot is for looking at just two variables. For example, a psychologist
was interested in the effects of exam stress on exam performance. So, she devised and
validated a questionnaire to assess state anxiety relating to exams (called the Exam Anxiety
Questionnaire, or EAQ). This scale produced a measure of anxiety scored out of 100.
Anxiety was measured before an exam, and the percentage mark of cach student on the
exam was uscd to assess the exam performance. The first thing that the psychologist should
do is draw a scatterplot of the two variables. Her data are in the file ExamAunxiety.dat and
you should load this file into a dataframe called examData by executing:

examData <- read.delim("Exam Anxiety.dat”, hedder‘ = TRUE)




Figure 4.12 shows the contents of the dataframe. There are five variables:

Code: a number indicating from which participant the scores came.

Revise: the total hours spent revising.
Exam: mark on the exam as a percentage,

Anxiety: the score on the EAQ.

[ B 4

Gender: whether the participant was male or female (stored as strings of text).

FIGURE 4.12
The examData
dataframe
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First we need to create the plot object, which I have called scatter, Remember that we
initiate this object using the ggplot(} function. The contents of this function specify the
dataframe to be used (examDuata) and any aesthetics that apply to the whole plot. I've said
before that one aesthetic that is usually defined at this level is the variables that we want to
plot. To begin with, let’s plot the relationship between exam anxiety (Anxiety) and exam
performance (Exam). We want Anxiety plotted on the x-axis and Exam on the y-axis.
Therefore, to specify these variables as an aesthetic we type aes(Anxiety, Exam). Therefore,
the final command that we execute is:

scatter <- ggplot(examData, aes(Anxiety, Exam))’

This command creates an object based on the examData dataframe and specifies the aes-
thetic mapping of variables to the x- and y-axes. When you execute this command nothing
will happen: we have created the object, but there is nothing to print.

If we want to see something then we need to take our object (scatter) and add a layer
containing visual elements. For a scatterplot we essentially want to add dots, which is done
using the geom_point(} function. o

scatter + geom_point()

If we want to add some nice labels to our axes then we can also add a layer with these
on using labs(): . «
scatter + geom_point(} + labs{x = "Exam Anxiety", y = "Exam

Performance %")




FIGURE 4.13
Scatterplot of
gxam anxiety
and exam
petformance
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If you execute this command you’ll see the-graph in Figure 4.13. The scatterplot tells us
that the majority of students suffered from high levels of anxiety (there are very few cases
that had anxiety levels below 60). Also, there are no obvious outliers in that most points
seem to fall within the vicinity of other points. There also seems to be some general trend
in the data, such that low levels of anxiety are almost always associated with high examina-
tion marks {and high anxiety is associated with a lot of variability in exam marks). Another
noticeable trend in these data is that there were no cases having low anxiety and low exam
performance — in fact, most of the data are clustered in the upper region of the anxiety scale.

| Adding a funky line @

You often sce scatterplots that have a line superimposed over the top that summarizes the .

relationship between variables (this is called a regression line and we will discover more
about it in Chapter 7). The scatterplot you have just produced won’t have a funky line on
it yet, but don’t get too depressed because I'm going to show you how to add this line now.
In ggplot2 terminology a regression line is known as a ‘smoother’ becaunse it
smooths out the lumps and bumps of the raw data into 2 line that summarizes
the. relationship. The geom_smooth() function provides the functionality to
add lines (curved or straight) to summarize the pattern within your data. ~
To add a smoother to our existing scatterplot, we would simply add the
geom_smooth() function and execute it: '

scatter + geom_point() + geom_smooth() + labs(x = "Exam Anxiety",
y = "Exam Performance %)

. Note that the command is exactly the same as before except that we have
added a smoother in a new layer by typing -+ geom_smooth(). The resulting
graph is shown in Figure 4.14. Note that the scatterplot now has a curved
line (a ‘smoother’) summarizing the relationship between exam anxiety and

exam performance. The shaded area around the line is the 95% confidence interval around

the line. We'll see in due course how to remove this shaded error or to recolour it.
The smoothed line in Figare 4.14 is very pretty, but often we want to fit a straight line

(or linear model) instead of a curved one. To do this, we need to change the ‘method’
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associated with the smooth geom. In Table 4.3 we saw several methods that could be used
for the smooth geom: Im fits a linear model (i.e., a straight line) and you could use rim for
a robust linear model (i.e., less affected by outliers).¢ So, to add a straight line (rather than
curved) we change geom_smooth() to inctude this instruction:

+ geom_smoo’ch(method = "tm")

We can also change the appearance of the line: by default it is blue, but if we wanted a red
line then we can simply define this aesthetic within the geom:

+ geom_smooth(method = "lm", colour = "Red")
Putting this together with the code for the simple scatterplot, we would execute:

scatter <- ggplot{examData, aes(Anxiety, Exam))
scatter + geom_point() + geom_smooth(method = "lm", colour =
= "Exam Anxiety", y = "Exam Performance %")

"Red™ )+ labs(x

The resulting scatterplot is shown in Figure 4.15. Note that it looks the same as Figure
4.13 and Figure 4.14 except that a red (because we specified the colour as red) regression
line has been added.” As with our curved line, the regression line is surrounded by the 95%
confidence interval (the grey area). We can switch this off by simply adding se = F (which
is short for “standard error = False’) to the geom_smooth() function:

+ geom_smooth(method = "im", se = F) -

We can also change the colour and transparency of the confidence interval using the fill and
alpha aesthetics, respectively. For example, if we want the confidence interval to be blue
like the line itself, and we want it fairly transparent we could specify:

geom_smooth(methpd - "lm", alpha = 0.1, fill = "Blue")

§ You must have the MASS package loaded to use this method.

7 Youw'll notice that the figure doesn’t have a red line but what you sec on your screen does, that’s because this
book isn’t printed in colour which makes it tricky for us to show you the colourful delights of R. In general, use
the figures in the book as a guide only and read the text with reference to what you actually see on your screen.

FIGURE 4.14
Scatterplot of
exam anxiety
against exam
performance
with a smoother
added




FIGURE 4.15
A simple '
* scatterplot with
a regression ling
added
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Note that transparency can take a value from 0 (fully transparent) to 1 (fully opaque)
and so we have set a fairly transparent colour by using 0.1 (after all we want to see the data

points underneath). The impact of these changes can be seen in Figure 4.16.

Grouped scatterplot ®

What if we want to see whether male and female students had different reactions to exam
anxiety? To do this, we need to set Gender as an aesthetic. This is fairly straightforward.
First, we define gender as a colour aesthetic when we initiate the plot object:

scatter <- ggplot(examData, aes(Anxiety, Exam, colour = Gender))




Note that this command is exactly the same as the previous example, except that we have
added ‘colour = Gender’ so that any geoms we define will be coloured differently for men
and women. Therefore, if we then execute: ‘

scatter + geom_point + geom_smooth(method = "Im™)

we would have a scatterplot with different coloured dots and regression lines for men and
women. It’s as simple as that. However, our lines would have confidence intervals and both
intervals would be shaded grey, so we could be a little more sophisticated and add some
instructions into geom_smooth() that tells it to also colour the confidence intervals accord-
ing to the Gender variable: -

scatter + geom_point() + geom_smooth(method = "lm", ages(fill = Gender), dlpha
=0.1)

Note that we have used fill to specify that the confidence intervals are coloured according
to Gender (note that because we are specifying a variable rather than a single colour we
have to place this option within aes()). As before, we have also manually set the transpar-
ency of the confidence intervals to be 0.1.

As ever, let’s add some labels to the graph:

+ labs(x = "Exam Anxiety", y = "Exam Performance %", colour = "Gender")

Note that by specifying a label for ‘colour’ I am setting the label that will be used on the
legend of the graph. The finished command to be executed will be:

scatter + geom point() + geom_smooth({method = "lm", aes(fill = Gender), alpha
=0.1) + Llabs(x = "Exam Anxiety", y = "Exam Performance %", colour = "Gender")

Figure 4.17 shows the resulting scatterplot. The regression lines tell us that the relation-
ship between exam anxiety and exam performance was slightly stronger in males (the line
is steeper) indicating that men’s exam performance was more adversely affected by anxiety
than women’s exam anxiety. (Whether this difference is significant is another issue — see
section 6.7.1.)
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FIGURE 4.17
Scatterplot of
exam anxiety
and exam
performance
split by gender




