The modeling process is cyclic and closely parallels the scientific method and the software life cycle for the development of a major software project. The process is cyclic because at any step we might return to an earlier stage to make revisions and continue the process from that point.

The steps of the modeling process are as follows:

1. **Analyze the problem**
 We must first study the situation sufficiently to identify the problem precisely and understand it in fundamental questions clearly. At this stage, we determine the problem’s objective and decide on the problem’s classification, such as deterministic or stochastic. Only with a clear, precise problem (identification can we translate the problem into mathematical symbols and develop and solve the model).

2. **Formulate a model**
 In this stage, we design the model, forming an abstraction of the system we are modeling. Some of the tasks of this step are as follows:

a. **Gather data**
 We collect relevant data to gain information about the system’s behavior.

b. **Make simplifying assumptions and document them**
 In formulating a model, we should attempt to be as simple as reasonably possible. Then, frequently we decide to simplify some of the factors and to ignore other factors that do not seem as important. Most problems are entirely too complex to consider every detail, and doing so would only make the model impossible to solve or to run in a reasonable amount of time on a computer. Moreover, factors often exist that do not appreciably affect outcomes. Besides simplifying factors, we may decide to return to Step 1 to restrict further the problem under investigation.

c. **Determine variables and units**
 We must determine and name the variables. An independent variable is the variable on which other depend. In many applications, time is an independent variable. The model will try to explain the dependent variables. For example, in simulating the trajectory of a ball, time is an independent variable; and the height and the horizontal distance from the initial position are dependent variables whose values depend on the time. To simplify the model, we may decide to neglect some variables (such as air resistance), treat certain variables as constants, or aggregate several variables into one. While deciding on the variables, we must also establish their units, such as days as the unit for time.

d. **Establish relationships among variables and submodels**
 If possible, we should draw a diagram of the model, breaking it into submodels and indicating relationships among variables. To simplify the model, we may assume that some of the relationships are simpler than they really are. For example, we might assume that two variables are related in a linear manner instead of in a more complex way.

3. **Solve the model**
 This stage implements the model. It is important not to jump to this step before thoroughly understanding the problem and designing the model. Otherwise, we might waste much time, which can be most frustrating. Some of the techniques and tools that the solution might employ are algebra, calculus, graphs, computer programs, and computer packages. Our solution might produce an answer we will never see or might simulate the situation. If the model is too complex to solve, we must return to Step 2 to make additional simplifying assumptions or to Step 1 to reformulate the problem.

4. **Verify and interpret the model’s solution**
 Once we have a solution, we should carefully examine the results to make sure that they make sense (verification) and that the solution solves the original problem (validity) and is usable. The process of verification determines if the solution works correctly, while the process of validation establishes if the system satisfies the problem’s requirements. Thus, verification concerns “solving the problem right,” and validation concerns “solving the right problem.” Testing the solution to see if predictions agree with real data is important for verification. We must be careful to apply our model only in the appropriate ranges for the independent data. For example, our model might be accurate for time periods of a few days but greatly inaccurate when applied to time periods of several weeks. We should analyze the model’s solution to determine its implications. If the model solution shows weaknesses, we should return to Step 1 or 2 to determine if it is feasible to refine the model. If so, we cycle back through the process. Hence, the cycle modeling process is a trade-off between simplification and refinement. For refinement, we may need to extend the scope of the problem in Step 1. In Step 2, while refining, we often need to reconsider our simplifying assumptions, include more variables, assume more complex relationships among the variables and submodels, and use more sophisticated techniques.

5. **Report on the model**
 Reporting on a model is important for its utility. Perhaps the scientific report will be written for colleagues at a laboratory or will be presented at a scientific conference. A report contains the following components, which parallel the steps of the modeling process:

a. **Analysis of the problem**
 Usually, assuming that the audience is intelligent but not aware of the situation, we need to describe the circumstances in which the problem arises. Then, we must clearly explain the problem and the objectives of the study.

b. **Model design**
 The amount of detail with which we explain the model depends on the situation. In a comprehensive technical report, we can incorporate much more detail than in a conference talk. For example, in the former case, we often include the source code for our programs. In either case, we should state the simplifying assumptions and the rationale for employing them. Usually, we will present some of the data in tables or graphs. Such figures should contain titles, sources, and labels for columns and axes. Clearly labeled diagrams of the relationships among variables and submodels are usually very helpful in understanding the model.

c. **Model solution**
 In this section, we describe the techniques for solving the problem and the solution. We should give as much detail as necessary for the audience to understand the material without becoming mired in technical minutia. For a written report, appendices may contain more detail, such as source code of programs and additional information about the solutions of equations.

d. **Results and conclusions**
 Our report should include results, interpretations, implications, recommendations, and conclusions of the model’s solution. We may also include suggestions for future work.

e. **Maintain the model**
 As the model’s solution is used, it may be necessary or desirable to make corrections, improvements, or enhancements. In this case, the modeler again cycles through the modeling process to develop a revised solution.

The modeling process is a creative, scientific endeavor. As such, a problem we are modeling usually does not have one correct answer. The problems are complex, and many models provide good, although different, solutions. Thus, modeling is a challenging, open-ended, and exciting venture.