Do not forget: Thursday, June 16th class will be in Lang 213 computer lab/classroom.

VIP: Check your login and password in Lawther tonight or tomorrow BEFORE you come to Thursday statistics. If you forgot your password, you will need to stop by Lang CCC (Computer Consulting Center) to get it reset! Bring your ID with you. The CCC Computer Consulting Center is visible behind you when you are sitting in Lang 28 SI classroom, so its very easy and convenient to find.

Due on Thursday in class in Lang 213: 2 problems and 2 box definitions

Pages 344 Example 14.1 NAEP quantitative scores.

In that same recent year, 840 WOMEN ages 21-25 were in the NAEP sample. They had a mean quantitative score of 286 on the NAEP test of quantitative skills. 286 is the mean or the X–bar for the WOMEN, whereas you can see on page 344 that the solved example had X–bar = 272.

Write out Example 14.1 steps #1, #2, and #3 using the mean 283. Completely write out steps #1, #2, and #3 along with showing the mathematics of your solution to the problem. Step #3 is where you show the range of the CI, the Confidence Interval which will be the specific range of numbers computed from the X–bar ± sample standard deviation.

Change the 3rd paragraph to the following:

To match the “simple conditions” we will treat the NAEP sample as a perfect SRS of young women and NAEP scores in the population of all young women as having an exactly Normal distribution with standard deviation $\sigma = 80$. Note that σ is sigma, so sigma is assumed to be 80 for the young women in the sample. X–bar is the estimate for the mean, and our sample mean for the 840 women was 286.

Pages 344 Example 14.1 NAEP quantitative scores. Now solve the same problem for n = 100 women instead of n = 840 women. In this solution you do NOT have to use as much ink or pencil lead. Just neatly show your solution, the equations and steps and the process of arriving at it. You do NOT have to show the #1, #2, and #3 written out prose explanations of the process. X–bar is still 286 and the sigma is still 80. Only n is different. Sample size is $n = 100$.

Write out the following two box definitions from the textbook.

Page 346 CONFIDENCE INTERVAL

Page 347 INTERPRETING A CONFIDENCE INTERVAL

http://www.cs.uni.edu/~jacobson/stats

jacobson@cs.uni.edu

Tuesday, June 14, 2011