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Abstract 

Two independent recent efforts have defined 
extensions to the Java platform that intend to satisfy real-
time requirements.  This paper summarizes the major 
features of these efforts, compares them to each other 
and to Ada 95’s Real-Time Annex, and argues that their 
convergence with Ada95 may serve to complement 
rather than compete with Ada in the real-time domain. 

1 Introduction 
Over the past several years the computing community 

has been coming to grips with the Java platform, a 
technology triad comprising a relatively simple Object-
Oriented Language, an extensive and continually 
growing set of class libraries, and a virtual machine 
architecture and class file format that provide portability 
at the binary level.  Java was first introduced as a 
technology that could be safely exploited on “client” 
machines on the Internet, with various levels of 
protection against malicious or mischievous applets.  
However, as interest in Java’s promise of “write once, 
run anywhere” has increased, the platform’s application 
domain has been expanding dramatically. 

One area that has been attracting attention is real-time 
systems.  On the one hand, that should not be completely 
surprising.  The research project at Sun Microsystems 
that spawned Java was attempting to design a technology 
for embedded systems in home appliances, and 
embedded systems typically have real-time constraints.  
Moreover, Java is more secure than C and simpler than 
C++, and it has found a receptive audience in users 
dissatisfied with these languages.  And unlike C and 
C++, Java has a built-in model for concurrency (threads) 
with low-level “building blocks” for mutual exclusion 
and communication that seem to offer flexibility in the 
design of multi-threaded programs.  Parts of the Java 
API address some real-time application areas (for 
example javax.comm for manipulating serial and 

parallel devices), and V1.3 of the Java Software 
Development Kit has introduced a couple of utility 
classes for timed events.  Java therefore may seem a 
viable candidate for real-time systems, especially to an 
organization that has adapted Java as an enterprise 
language. 

However, even a casual inspection of Java reveals a 
number of obstacles that interfere with real-time 
programming.  In this introductory section we will 
summarize these issues and then briefly describe how 
they have been addressed. 

1.1 Challenges 
The main problems for Java as a real-time technology 

fall into several areas, mostly related to predictability. 
• Thread model 

Although Java semantics are consistently 
deterministic for the sequential parts of the language 
(e.g. the order of expression evaluation is defined as left-
to-right, references to uninitialized variables are 
prevented) they are largely implementation-dependent 
for thread scheduling.  The Java Language Specification 
explicitly states [JLS00, Section 17.12]:  

“... threads with higher priority are generally 
executed in preference to threads with lower priority.  
Such preference is not, however, a guarantee that the 
highest priority thread will always be running, and 
thread priorities cannot be used to reliably implement 
mutual exclusion.” 

This flexibility makes it impossible to ensure that real-
time threads will meet their deadlines.  The 
implementation may or may not use priority as the 
criterion for choosing a thread to make ready when a 
lock is released.  Even if it did, unbounded priority 
inversions could still occur since there is no requirement 
for the implementation to provide priority inversion 
avoidance policies such as priority inheritance or priority 
ceiling emulation.  There is also no guarantee that 
priority is used for selecting which thread is awakened 
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by a notify(), or which thread awakened by a 
notifyAll() is selected to run.  

Other facets of the thread model also interfere with 
real-time requirements.  The priority range (1 through 
10) is too narrow, and the relative sleep() method is 
not sufficient: the standard idiom for simulating 
periodicity with this method can lead to a missed 
deadline if the thread is preempted after computing the 
relative delay but before being suspended. 

A more detailed analysis of Java threads, with a 
comparison to Ada’s tasking model, may be found in 
[Brosgol98]. 
• Memory management 

Despite its C-like syntax, Java belongs semantically 
to a family of Object Oriented languages including 
Simula, Smalltalk, and Eiffel: languages that provide no 
mechanism for programmers to reclaim storage but 
which instead are implemented with automatic memory 
reclamation (“Garbage Collection” or “GC”).  The idea 
of garbage collection in a real-time program may sound 
like a contradiction in terms, but there have been a 
number of incremental and concurrent collectors that 
attempt to address the predictability problems of a 
classical mark-and-sweep strategy [Jones97].  
Nevertheless, efficient real-time garbage collection is 
still more a research topic than a mainstream technology.  
This is a particular issue for Java, since all objects 
(including arrays) go on the heap. 
• Dynamic Semantics 

One of the main attractions of Java is its run-time 
flexibility.  For example, classes are loaded dynamically, 
intraspection allows the run-time interrogation of a 
class’s properties, and cutting-edge compiler technology 
allows optimized code to be generated during program 
execution.  Unfortunately, all of these capabilities 
conflict with the traditional static environment 
(“compile, download, run”) for real-time programs.  
Implementing Java with static linking is possible but 
difficult, and necessitates restrictions on the use of 
certain language features.   
• Asynchrony 

A real-time program typically needs to respond to 
asynchronous events generated by either hardware or 
software, and sometimes needs to undergo asynchronous 
transfer of control (“ATC”), for example to time out if 
an operation is taking too long.  The Java Beans and 
AWT event registration and listener model is a 
reasonable framework for asynchronous events but omits 
semantic details critical to real-time programs, such as 
the scheduling of event handlers.  The interrupt() 
method requires polling and thus is not an ATC 
mechanism.  The methods related to ATC have either 
been deprecated (stop, suspend, resume) or are 
discouraged because of their proneness to error 

(destroy).  Thus Java is rather weak in the area of 
asynchrony. 
• Object-Oriented Programming 

OOP support is one of Java’s most highly touted 
strengths, but the real-time community has traditionally 
been very conservative in its programming style and still 
views OOP with some skepticism.  The dynamic nature 
of OOP (for example the dynamic binding of instance 
methods) interferes with static analyzability, and 
Garbage Collection introduces unpredictability or high 
latency.  
• Application Program Interface 

Class libraries that are to be used in real-time 
programs need to be implemented specially in order to 
ensure that their execution time be predictable.  This is 
partly a programming issue (e.g. choice of algorithms 
and data structures) and partly a JVM implementation 
issue (Garbage Collection strategy). 
• Missing functionality 

With the goal of language simplicity, the Java 
designers intentionally omitted a number of features that 
might be useful in a real-time program, such as general 
unsigned integral types, strongly-typed scalars, and 
enumeration types.  Other omissions impinge on 
programming in general, such as generic templates and 
operator symbol overloading.  The language and API 
also lack system programming facilities for accessing the 
underlying hardware (such as “peek” and “poke” to 
access numeric data at physical addresses). 
• Performance 

Although “real time” does not mean “real fast”, run-
time performance cannot be ignored.  Java has several 
challenges in this area.  The key to “write once, run 
anywhere” is the JVM and the binary portability of class 
files.  But a software interpreter introduces overhead, 
and hardware implementations are not mainstream 
technology. Garbage Collection and the absence of 
stack-resident objects have an obvious performance 
impact, and there is also the problem that array 
initializers result in run-time bytecodes to be performed, 
versus having a ROMable image in the class file. 

1.2 The NIST Requirements and the Two 
Real-Time Java Efforts 

The problems with Java as a real-time technology are 
steep but not insurmountable. Given the potential market 
and the fascinating technical issues it is not surprising 
that real-time Java has been a topic of active 
investigation.  Probably the earliest work was by Kelvin 
Nilsen in late 1995 and early 1996 [Nilsen96].  
Subsequently Lisa Carnahan from the National Institute 
for Standards and Technology in the U.S. (NIST) took 
the lead in organizing a series of workshops to identify 
the issues and to develop consensus-based requirements 



for real-time extensions to the Java platform.  The 
culmination of this group’s efforts, which ultimately 
included participation by 38 different entities, was a 
document titled “Requirements for Real-Time 
Extensions for the Java Platform”, published in 
September 1999 [NIST99]. 

The NIST-sponsored effort focused on defining the 
requirements for real-time Java extensions.  That group 
made a conscious choice not to develop a specification 
for such extensions. 

Two independent groups have undertaken to define 
such specifications.  One is the Real-Time Java Working 
Group under Kelvin Nilsen from Newmonics; this group 
was formed in November 1998 and is under the auspices 
of a set of companies and individuals known as the J-
Consortium. The other effort is from the Real-Time for 
Java Expert Group (“RTJEG”) under Greg Bollella (then 
with IBM, now at Sun Microsystems).  The RTJEG was 
established under the terms of Sun’s Java Community 
Process; the product of this effort is a specification, a 
reference implementation, and a conformance test suite.  
As of early 2001, the first draft of the specification has 
been published [Bollella00], while the reference 
implementation and the test suite formulation are in 
progress. 

The split into two efforts versus a single undertaking 
was motivated by business considerations rather than 
technical factors.  Participation in the RTJEG required 
signing an agreement with Sun Microsystems that some 
organizations found problematic.  However, the two 
efforts ended up taking technical approaches that are 
more complementary than duplicative.  As will be seen 
below when we cover the specifications in more detail, 
the J-Consortium has focused on defining real-time 
“core” kernel facilities external to a JVM, whereas the 
RTJEG has defined an API that needs to be supported 
within a JVM implementation.  Indeed the J-Consortium 
specification can be regarded as providing a set of kernel 
services as might be found in an RTOS for Java. 

2 Real-Time Core Specification 

2.1 Summary 
In order to establish a foundation upon which its 

Real-Time Core Extensions to the Java platform 
specification [JCons00] would be built, the J 
Consortium’s Real-Time Java Working Group (RTJWG) 
established a number of clarifying principles to augment 
the full list of key requirements identified in the NIST 
requirements document for real-time extensions to Java 
[NIST99].  These working principles follow.  For 
purposes of this discussion, the term “Baseline Java” 
refers to the 1.1 version of the Java language, as it has 
been defined by Sun Microsystems, Inc, and “Core Java” 

refers to an implementation of the Real-Time Core 
Specification. 
• The Core Java execution environment shall exist in 
two forms: the dynamic one that is integrated with a Java 
virtual machine and supports dynamic loading and 
unloading of Core classes, and the static one that is 
stand-alone and does not supporting dynamic class 
loading. 
• The Core Java dynamic execution environment shall 
support limited cooperation with Baseline Java programs 
running on the same Java virtual machine, with the 
integration designed so that neither environment needs to 
degrade the performance of the other. 
• The Core Java specification shall define distinct 
class hierarchies from those defined by Baseline Java. 
• The Core Java specification shall enable the creation 
of profiles which expand or subtract from the capabilities 
of the Core Java foundation. 
• The Core Java system shall support limited 
cooperation with programs written according to the 
specifications of these profiles, with the integration 
designed so that neither environment needs to degrade 
the performance of the other. 
• The semantics of the Core Java specification shall 
be sufficiently simple that interrupt handling latencies 
and context switching overheads for Core Java programs 
can match the latencies and context switching overheads 
of today’s RTOS products running programs written in 
C, C++ and Ada. 
• The Core Java specification shall enable 
implementations that offer throughputs comparable to 
those offered by today’s optimizing C++ compilers, 
except for semantic differences required, for example, to 
check array subscripts. 
• Core Java programs need not incur the run-time 
overhead of coordinating with a garbage collector. 
• Baseline Java components and components written 
according to the specifications of profiles, shall be able 
to read and write the data fields of objects that reside in 
the Core Java object space. 
• Security mechanisms shall prevent Baseline Java 
and other external profile components from 
compromising the reliability of Core Java components. 
• Core Java programs shall be runnable on a wide 
variety of different operating systems, with different 
underlying CPUs, and integrated with different 
supporting Baseline Java virtual machines. There shall 
be a standard way for Baseline Java components to load 
and execute Core Java components. 



• The Core Java specification shall support the ability 
to perform memory management of dynamic objects 
under programmer control. 
• The Core Java specification shall support a 
deterministic concurrency and synchronization model 
with features comparable to those in Real-Time 
Operating Systems. 
• The Core Java specification shall be designed to 
support a small footprint, requiring no more than 100K 
bytes for a typical static Core Java execution 
environment. 
• All Core Java classes shall be fully resolved and 
initialized at the time they are loaded. 

 
In summary, the Core Java execution environment:  

• either is a plug-in module that can augment any 
Baseline Java virtual machine.  This allows users of the 
Core Java execution environment to leverage the large 
technology investment in current virtual machine 
implementations, including byte-code verifiers, garbage 
collectors, JustInTime compilers, dynamic loaders, and 
symbolic debuggers; 
• or can be configured to run without a Baseline Java 
virtual machine.  This allows users of the Core Java 
execution environment to develop high performance 
kernels deployed in very small memory footprints. 

2.2 Concurrency and Synchronization 

2.2.1 Scheduling and Priorities 
The Core Java specification supports a large range of 

priorities.  Each implementation is required to support a 
minimum of 128 distinct values, with the highest N 
being used as interrupt priorities, where N is 
implementation-defined.  In addition, the Core Java 
semantics require preemptive priority-based scheduling 
as defined by the FIFO_Within_Priorities policy.  
Support for time-slicing is also defined but not required.  
This model is in marked contrast to Baseline Java's small 
priority range (10 values) and absence of guarantee that 
a higher priority task will preempt a low priority task 
when it is ready to run.  Alternative scheduling policies 
may be specified via profiles. 

The Core task class hierarchy is rooted at 
CoreTask.  A CoreTask object must be explicitly 
started via the start() method.  There are two 
specialized extensions of CoreTask: 
• The SporadicTask class defines tasks that are 
readied by the occurrence of an event that is triggered 
either periodically or via an explicit call to its fire() 
method. 

• The InterruptTask class defines tasks that are 
readied by the occurrence of an interrupt event, making 
them analogous to interrupt service routines. 

2.2.2 Task Synchronization Primitives 
Task synchronization is provided in the Core Java 

specification via a number of different features, a first 
group of which supports priority inversion avoidance 
and a second group of which does not. 

In the first group, Baseline Java-style usage of 
synchronized methods and synchronized(this) constructs 
are both supported and define transitive priority 
inheritance to limit the effects of priority inversion.  In 
addition, traditional POSIX-style mutexes are supported, 
and these also define transitive priority inheritance to be 
applied when there is contention for the lock.  Finally 
there is support for Ada-style protected objects that are 
locked using priority ceiling protocol (actually, the same 
emulation using immediate ceiling locking that is 
defined in Ada95), and that prohibit execution of 
suspending operations, e.g. wait().  An extension of 
the priority ceiling protocol interface, known as the 
Atomic interface, is defined for InterruptTask work() 
methods.  This interface implies that all the code (at the 
bytecode level) must be statically execution-time-
analyzable.  The intent is to be able to guarantee the 
static worst case execution time bounds on interrupt 
handler execution. 

In the second group, POSIX-style counting and 
signaling semaphores are supported.  There is no concept 
of a single owner of a semaphore and hence there is no 
priority inheritance on contention (and unbounded 
priority inversion may result).  A counting semaphore 
may have count concurrent owners.  A signaling 
semaphore is similar to Ada’s suspension object except 
that multiple tasks can be waiting for the signal.  A 
signal that occurs when there are no waiting tasks is a 
no-op. 

2.3 Memory Management 

2.3.1 Core Object Space 
The Core Java requirements include the provision of 

security measures to ensure that the Baseline Java 
domain cannot compromise the integrity of Core objects 
in the dynamic Core execution environment.  This is 
realized in the specification by segregating Core objects 
into their own object space that is quite separate from the 
Baseline Java heap. 

However another requirement of the dynamic Core 
Java execution environment is to provide limited and 
controlled communication with the Baseline Java 
domain.  This is achieved via the CoreRegistry class 
that includes a publish() method to publish the 



names of externally-visible Core objects.  A lookup() 
method is also provided for the Baseline Java domain to 
obtain a reference to the published Core object.  
However the Baseline Java domain is only permitted to 
call special core-baseline methods that are explicitly 
identified within the published object, and so access to 
the Core object space is totally defined and controlled by 
the operation of these methods. 

2.3.2 Garbage Collection 
A key requirement of the Core Java specification is 

that the system need not incur the overhead of traditional 
automatic garbage collection.  This is intended to 
provide the necessary performance and predictability, 
avoiding overheads such as read/write barriers, object 
relocation due to compaction, stack/object scanning and 
object description tables, as well as avoiding the 
determinism problems associated with executing the 
garbage collector thread. 

2.3.3 Core Object Allocation / Deallocation 
A garbage collector is an essential component of a 

Baseline Java VM due to Java’s object lifetime model, 
which does not provide an explicit deallocation 
operation, nor do the semantics provide known points for 
an implementation to perform guaranteed implicit 
deallocation.  Hence the Core specification defines an 
alternative strategy for memory allocation and 
reclamation under programmer control.  This is achieved 
via the following: 
• An object whose reference is declared locally within 
a method can be explicitly identified as stackable, which 
means that the object lifetime is asserted to be no greater 
than that of the enclosing method.  Various restrictions 
are defined for stackable objects to prevent dangling 
references.  Thus an implementation may allocate 
stackable objects on the runtime method stack in the 
same way as  Ada implementations of local variables. 
• A class called AllocationContext is defined in the 
Core specification that is somewhat analogous to Ada’s 
Root_Storage_Pool type in that it provides a facility for 
declaring an area for dynamic memory allocation 
(including at a specific memory address) and the means 
to control it programmatically.  Each task automatically 
implicitly allocates an allocation context upon creation, 
and this storage area is used by default for allocation of 
its non-stackable objects. 

The base AllocationContext class provides a 
release() method that reclaims all the objects in the 
context in an unchecked way that could lead to dangling 
references as for Ada’s Unchecked_Deallocation.  
The model of allocation contexts allows an application to 
implement various paradigms such as mark/release 
heaps, and factory methods that construct objects in a 

known storage area.  In addition, all objects (with one 
exception) that are allocated in implicit task-specific 
allocation contexts are automatically reclaimed when the 
task terminates either normally or via an external call to 
its stop() method.  The exceptional case is for objects 
(and those they reference) that are published to the 
Baseline Java domain.  This ensures that the Baseline 
Java domain cannot get a dangling reference from the 
use of a published Core Java object.  An implementation 
of the dynamic Core Java execution environment is 
therefore required to detect when published objects are 
no longer accessible by the Baseline Java domain such 
that they can become candidates for automatic 
reclamation at task termination.  Stackable objects are 
not permitted to be published to Baseline Java. 

2.4 Asynchrony 
Asynchronous interaction between Core tasks is 

achieved in the Core Java specification via events.  There 
is also the abort() method to kill a task.  Two event 
models are defined: 
a) the firing and handling of asynchronous events 
b) asynchronous transfer of control. 

2.4.1 Asynchronous Events 
Three kinds of asynchronous event are defined by the 

Core Java specification: 
• PeriodicEvent is defined to support periodic tasks.  
The event fires at the start of each period which causes 
the associated periodic event handler task to become 
ready to execute its work() method. 
• SporadicEvent is defined to support sporadic tasks 
that are triggered by software.  The event is explicitly 
fired by a task which causes the associated sporadic 
event handler task to become ready to execute its 
work() method 
• InterruptEvent is defined to support interrupt 
handling.  The event can be explicitly fired by a task (to 
achieve a software interrupt) or implicitly fired by a 
hardware interrupt.  This causes the associated interrupt 
event handler task to become ready to execute its 
work() method, which must implement the Atomic 
interface as described in section 2.2.2. 

2.4.2 Asynchronous Transfer of Control 
Asynchronous transfer of control is supported in the 

Core Java specification by building upon the 
asynchronous event model.  A special ATCEvent class 
is defined for the event itself.  Each task construction 
may specify a handler for ATCEvent that is invoked 
whenever another task calls the signalAsync() 
method, unless the task is currently in an abort-deferred 



region.  If the handler returns normally, the ATCEvent is 
handled without causing a transfer of control, i.e. the 
task resumes at the point at which it was interrupted.  
This is useful in situations where the ATCEvent is to 
have minimal or no effect, such as ignoring a missed soft 
deadline. 

Otherwise, if the handler returns by raising a special 
ScopedException object and the task is in an ATC-
enabled execution scope, then the exception causes the 
transfer of control in the task.  An ATC-enabled scope is 
created by constructing a ScopedException object and 
having a try-catch clause that includes a handler for the 
exception class. 

The Core Java specification also defines certain 
abort-deferred regions that defer the transfer of control 
action, in particular Atomic scopes and finally clauses.  
Note however that once an ATC-enabled region has been 
entered, all method calls are susceptible to ATC other 
than the abort-deferred regions mentioned above.  Since 
the Core Java specification rules prevent a Core program 
from making direct method calls to the Baseline Java 
domain, the problem does not arise of an ATC occurring 
at any point within “legacy” Baseline Java code that was 
not designed to expect that eventuality. 

The ATC construct can be used for several common 
idioms, such as preventing overrun by timing out a 
sequence of actions, and for mode change.  Special rules 
apply to the handlers for ScopedException to ensure 
that nested ATC scopes can be created without the 
danger of an outer ATC triggering exception being 
caught by an inner ATC catch clause. 

2.5 Time 
The Core Java specification defines a Time class that 

includes methods to construct times in all granularities 
from nanoseconds through to days.  These can be used to 
program periodic timer events to trigger cyclic tasks or 
to timeout overrunning task execution. 

In addition, the relative delay sleep() method and 
the absolute delay sleepUntil() method provide a 
programmatic means of coding periodic activity.  In both 
cases, the time quantum can be specified to the 
nanosecond level. 

There is also a method tickDuration() to return 
the length of a clock tick. 

2.6 Other Features 
The Core Java specification also includes a 

comprehensive low-level I/O interface for access to I/O 
ports, and a class Unsigned for unsigned relational 
operations.  (Note that Baseline Java integral types are 
signed with regard to relational operations, but unsigned 
with regard to arithmetic.) 

2.7 Profiles 
A number of profiles of the Core specification are 

under development.  One of the most interesting to the 
Ada community is the High Integrity Profile 
[Dobbing00] which is designed to meet the requirements 
of: 
• Safety Critical / High Integrity, for which all the 
data and executable code must undergo thorough 
analysis and testing, and must be guaranteed not to be 
corruptible by less trusted code; 
• High Reliability / Fault Tolerance, for which the 
code must be resilient enough to detect faults and to 
recover with minimal disturbance to the overall system; 
• Hard Real-Time, for which the timing of code 
execution must be deterministic to ensure that deadlines 
are met; 
• Embedded, for which a small footprint and fast 
execution are required. 

These requirements are very similar to those that 
steered the definition of the Ravenscar Profile 
[Dobbing98] and hence it is not surprizing that the high 
integrity profile provides similar functionality:  
• The dynamic Core Java execution environment is 
not supported (i.e. no direct interaction with a JVM); 
• All tasks are constructed during program startup; 
• sleepUntil() is supported, but sleep() is 
not; 
• Periodic, sporadic and interrupt event handler tasks 
are supported; 
• Signaling semaphores are supported, but counting 
semaphores and mutexes are not; 
• Protected objects are supported; 
• All synchronized code is locked using priority 
ceiling emulation (i.e. no priority inheritance) 
• The scheduling policy is FIFO_Within_Priorities; 
• Asynchronous abort is not supported; 
• Asynchronous dynamic priority change is not 
supported; 
• Asynchronous suspension is not supported; 
• Asynchronous transfer of control is not supported. 

 
This profile allows the construction of a very small, 

fast, deterministic runtime system that could ultimately 
be a candidate even for formal certification. 



3 RT Java Expert Group Specification 

3.1 Summary 
Before setting out on the design of the real-time 

specification for Java (“RTSJ”), the RTJEG established 
the following guiding principles: 
• Applicability to particular Java environments.  
Usage is not to be restricted to particular versions of the 
Java Software Development Kit. 
• Backward compatibility.  Existing Java code can run 
on any implementation of the RTSJ. 
• “Write Once, Run Anywhere”.  This is an important 
goal but difficult to achieve for real-time systems (as a 
trivial example of the difficulties, the correctness of a 
real-time program depends on the timing properties of 
the executing code, but different hardware platforms 
have different performance characteristics).  
• Current practice versus advanced features.  The 
RTSJ attempts to address current real-time practice but 
also includes extensibility hooks to allow exploitation of 
new technologies. 
• Predictable execution.  This is the highest priority 
goal; performance or throughput may need to be 
compromised in order to achieve it. 
• No syntactic extension.  The RTSJ does not define 
new keywords or new syntactic forms. 
• Allow variation in implementation decisions.  The 
RTSJ recognizes that different implementations will 
make different decisions (for example a tradeoff between 
performance and simplicity) and thus does not require 
specific algorithms. 

The resulting specification consists of the 
javax.realtime package, an API whose 
implementation requires specialized support in the JVM.  
In summary, the design provides real-time functionality 
in several areas: 
• Thread scheduling and dispatching.  The RTSJ 
introduces the concept of a real-time thread and defines 
both a traditional priority-based dispatching mechanism 
and an extensible framework for implementation-defined 
(and also user-defined) scheduling policies.    
• Memory management.  The RTSJ provides a general 
concept of a memory area that may be used either 
explicitly or implicitly for object allocations.  Examples 
of memory areas are the (garbage-collected) heap, and 
also “immortal” memory whose objects persist for the 
duration of an application’s execution.  Another 
important special case is a memory area that is used for 
object allocations during the execution of a dynamically 
determined “scope”, and which is automatically emptied 
at the end of the scope.  The RTSJ defines the concept of 

a “no-heap real-time thread” which is not allowed to 
reference the heap; this restriction means that such a 
thread can safely preempt the Garbage Collector. 
• Synchronization and resource sharing.  The RTSJ 
requires the implementation to supply one or more 
mechanisms to avoid unbounded priority inversion, and 
it defines two monitor control policies to meet this 
requirement: priority inheritance and priority ceiling 
emulation.  The specification also defines several “wait 
free queues” to allow a no-heap real-time thread and a 
Baseline Java thread to safely synchronize on shared 
objects. 
• Asynchrony.  The RTSJ defines a general event 
model based on the framework found in the AWT and 
Java Beans.  An event can be generated from software or 
from an interrupt handler.  Event handlers behave like 
threads and are schedulable entities.  The design is 
intended to be scalable to very large numbers of events 
and event handlers (tens of thousands), although only a 
small number of handlers are expected to be active 
simultaneously.  The RTSJ also defines a mechanism for 
asynchronous transfer of control (“ATC”), supporting 
common idioms such as timeout and mode change.  The 
affected code needs to explicitly permit ATC; thus code 
that is not written to be asynchronously interruptible will 
work correctly. 
• Physical and “raw” memory access.  The RTSJ 
provides mechanisms for specialized and low-level 
memory access.  Physical memory is a memory area 
with special hardware characteristics (for example flash 
memory) and can contain arbitrary objects.  Raw 
memory allows “peek” and “poke” of integral and 
floating-point variables at offsets from a given base 
address. 

3.2 Concurrency and Synchronization 
The basis of the RTSJ’s approach to concurrency is 

the class RealtimeThread, a subclass of Thread. 

3.2.1 Scheduling and Priorities 
The RTSJ requires a base scheduler that is fixed-

priority preemptive with at least 28 distinct priority 
levels, above the 10 Baseline Java levels.  An 
implementation must map the 28 real-time priorities to 
distinct values, but the 10 non-real-time levels are not 
necessarily distinct. 

Constructors for the RealtimeThread class allow 
the programmer to supply scheduling parameters, release 
parameters, memory parameters, a memory area, and 
processing group parameters.  The scheduling 
parameters characterize the thread’s execution eligibility 
(for example, its priority).  A real-time thread can have a 



priority in either the real-time range or the Baseline Java 
range. 

The release parameters identify the real-time thread’s 
execution requirements and properties (whether it is 
periodic, aperiodic or sporadic).  Memory parameters 
identify the maximum memory consumption allowed 
and an upper bound on the heap allocation rate (used for 
Garbage Collector pacing).  Processing group parameters 
allow modeling a collection of aperiodic threads with 
bounded response time requirements. 

Several release parameters classes are provided, 
corresponding to the kinds of real-time threads that are 
supported.  A periodic parameters object specifies the 
period, the cost (maximum computation time per 
period), the deadline (which may be before the end of 
the period), and handlers for cost overrun and missed 
deadline.  To create a periodic thread, the programmer 
constructs a real-time thread with a periodic parameters 
object as its release parameters.  The run() method for 
such a thread should invoke the method 
waitForNextPeriod() to suspend itself after its 
per-period work.  The programmer may supply overrun 
handlers to respond to two kinds of abnormality: 
overrunning the budgeted cost (detecting this situation 
requires support from the underlying platform and is 
therefore not required of the implementation unless such 
support exists), and missing a deadline.  The overrun or 
miss handlers can invoke the schedulePeriodic() 
method to resume scheduling of the periodic thread. 

An aperiodic parameters object is used for 
schedulable entities that may become active based on the 
occurrence of an asynchronous event or the invocation of 
a notify() or notifyAll().  The aperiodic 
parameters define the cost, deadline, overrun handler, 
and miss handler analogously to periodic parameters. 

A special case of aperiodic parameters is sporadic 
parameters.  A schedulable entity constructed with 
sporadic parameters has a minimum inter-arrival time 
between releases. 

One of the RTSJ’s distinguishing capabilities is a 
general-purpose extensible scheduling framework.  An 
instance of the Scheduler class manages the 
execution of schedulable entities and may implement a 
feasibility analysis algorithm.  Through method calls a 
real-time thread can be added to, or removed from, the 
scheduler’s feasibility analysis; the release parameters 
are used in this analysis.  The scheduler’s 
isFeasible() method returns true if the existing 
schedulable entities are schedulable (i.e., will always 
meet their deadlines) and false otherwise. 

The priority-based scheduler is required to be the 
default scheduler at system startup, but the programmer 
can modify this at run time (for example setting an 
Earliest-Deadline First scheduler, if one is supplied by 
the implementation). 

The priority-based scheduler is FIFO within priorities 
and manages Baseline Java threads as well as real-time 
threads.  When a thread blocks it goes to the tail of the 
blocked queue for its priority level, for the resource on 
which it is blocked.  When a blocked thread becomes 
ready to run, or when a running thread invokes 
yield(), it goes to the tail of the ready queue for its 
priority level.  When a thread’s priority is modified 
explicitly through a method call the thread goes to the 
tail of the relevant queue for its new priority level.  
When a thread is preempted, the RTSJ does not specify 
where in the ready queue for its priority the thread is 
placed.  This nondeterminism does not affect feasibility 
analysis. 

The priority-based scheduler is said to be fixed-
priority since it is not allowed to modify thread priorities 
implicitly except for priority inversion avoidance (see 
below).  Thus schemes such as “priority aging” are not 
allowed.  Time slicing of the highest-priority threads is 
permitted, although the implementation provides no 
explicit support for such a policy. 

3.2.2 Synchronization 
An unbounded priority inversion in a thread 

synchronizing on a locked object can lead to missed 
deadlines, and the RTSJ accordingly requires that the 
implementation supply one or more monitor control 
policies to avoid this problem.  By default the policy is 
priority inheritance, but the RTSJ also defines a priority 
ceiling emulation policy.  Each policy can be selected 
either globally or per-object and the choice can be 
modified at run time.  An implementation can supply a 
specialized form of priority ceiling emulation that 
prohibits a thread from blocking while holding a lock; 
this avoids the need for mutexes and queues in the 
implementation. 

A subtle problem seems to arise if a Baseline Java 
thread and a no-heap real-time thread attempt to 
communicate through a synchronized object (such an 
object cannot be in the heap, but it may be in immortal 
memory).  The apparently troublesome scenario is the 
following: 

1. The regular thread locks the object. 
2. The garbage collector preempts and starts to run. 
3. The no-heap real-time thread preempts the 

garbage collector, with the heap possibly in an 
inconsistent state. 

4. The no-heap real-time thread attempts to 
synchronize on the object currently locked by the 
regular thread. 

5. The regular thread inherits the no-heap real-time 
thread’s priority and resumes execution. 

6. The regular thread allocates an object in the heap, 
but this can corrupt the heap (which might be in 
an inconsistent state). 



In fact the RTSJ semantics prevent this problem 
although at the price of extra latency for the no-heap 
real-time thread.  When the regular thread attempts to 
allocate an object at step 6, it will not be able to do so 
since the garbage collector holds the lock on the heap.  
Thus the garbage collector will have its priority boosted 
(by priority inheritance), and when it releases the lock 
the heap will be in a consistent state so that the Baseline 
Java thread can continue in its “critical section” of code 
synchronized on the object it is sharing with the no-heap 
real-time thread. 

The price for a consistent heap is extra latency, since 
the no-heap real-time thread now needs to wait for the 
Garbage Collector.  The RTSJ allows the programmer to 
avoid this latency through wait-free queues; Baseline 
threads and no-heap real-time threads can use such 
queues to communicate without blocking.   

3.3 Memory Management 
Perhaps the most difficult issue for the RTSJ was the 

question of how to cope with garbage collection (“GC”).  
Requiring specific GC performance or placing 
constraints on GC-induced thread latency would have 
violated several guiding principles.  Instead the opposite 
approach was taken: the RTSJ makes no assumptions 
about the GC algorithm; indeed in some environments 
there might not even be a garbage collector. 

The key concept is the notion of a memory area, a 
region in which objects are allocated.  The garbage-
collected heap is an example of a memory area.  Another 
memory area is immortal memory: a region in which 
objects are not garbage collected or relocated and thus 
persist for the duration of the program’s execution.  
More flexibility is obtained through scoped memory 
areas, which can be explicitly constructed by the 
programmer.  Each scoped memory area contains objects 
that exist only for a fixed duration of program execution.  
The heap and immortal memory can be used by either 
regular threads or real-time threads; scoped memory can 
be used only by real-time threads.   

Common to any memory area is an enter() 
method which takes a Runnable as a parameter.  When 
enter() is invoked for a memory area, that area 
becomes active, and the Runnable object’s run() 
method is invoked synchronously.  The memory area is 
then used for all object allocations through “new” 
(including those in methods invoked from run() 
whether directly or indirectly) until either another 
memory area becomes active or the enter() method 
returns.  When enter() returns, the previous active 
area again becomes active.   

A memory area may be provided to a real-time thread 
constructor; it is then made active for that real-time 
thread’s run() method when the thread is started. 

Memory areas may also be used for “one shot” 
allocation, through factory methods that construct 
objects or arrays in the associated area. 

Scoped memory may be viewed as a generalization of 
a method’s stack frame.  Indeed, early in the design the 
RTJEG considered providing a mechanism through 
which objects allocated in a method would be stored on 
the stack instead of the heap, with automatic reclamation 
at method exit instead of garbage collection.  Standard 
class libraries could then be rewritten with the same 
external specifications (public members, method 
signatures and return type) but with an implementation 
that used the stack versus the heap for objects used only 
locally.  To prevent dangling references a check would 
be needed (no assignment of a stack object reference 
where the target reference is longer lived than the 
source).  Some sort of check (either at compile time or 
run time) is inevitable.  However, the reason that a 
simple stack-based object scheme was eventually 
rejected is that a reference to a local object could not be 
safely returned to a caller.  Thus the goal of using 
specially-implemented versions of existing APIs would 
not be achievable. 

Instead the RTSJ has generalized the concept of 
storing local objects on the stack.  A scoped memory 
area is used not just for one method invocation but for 
the “closure” of all methods invoked from a 
Runnable’s run() method. The objects within the 
memory area are not subject to relocation or collection, 
and an assignment of a scoped reference to another 
reference is checked (in general at run time) to prevent 
dangling references.  Scopes may be nested: while one 
scoped memory area is active, another may be entered, 
and in fact the same scoped memory area may be entered 
while in use by an outer scope.  When the outermost 
scope is exited (i.e., when the earliest enter() for a 
given scoped memory area returns) the area is reset so 
that it contains no objects.  A common idiom is a while 
or for loop that invokes enter() on a scoped 
memory area at each iteration.  All objects allocated 
during the iteration are effectively flushed when 
enter() returns, so there is no storage leakage.  The 
entire memory area is released when it is no longer 
accessible. In general the implementation needs to use a 
reference count scheme or its equivalent for this purpose.  

The RTSJ provides two main non-abstract classes for 
scoped memory: “LT” memory (linear time) and “VT” 
memory (“variable time”).  Object allocation and default 
initialization for LT memory must be implemented to be 
linear in the size of the object; no such constraint is 
imposed on VT memory.  In practice, the difference 
between the two is that the implementation must allocate 
the entire memory region used for LT memory (although 
not necessarily contiguously) whereas for VT memory 



only an initial region needs to be allocated in advance, 
with further chunks added as necessary. 

The RTSJ also provides several more specialized 
kinds of memory area.  Support for physical memory 
(i.e. memory with special characteristics) is offered 
through immortal physical memory and scoped physical 
memory.  This can be useful for efficiency; for example 
the programmer may want to allocate a set of objects in a 
fast-access cache.  The raw memory access and raw 
memory float access memory areas offer low-level 
access (“peek” and “poke”) to integral and floating-point 
data, respectively. 

3.4 Asynchrony 
The RTSJ supplies two mechanisms relevant to 

asynchronous communication: asynchronous event 
handling, and asynchronous transfer of control. 

3.4.1 Asynchronous Event Handling 
The RTSJ defines the concepts of an asynchronous 

event and an asynchronous event handler, and it 
specifies the relationship between the two. 

An async event can be triggered either by a software 
thread or by a “happening” external to the JVM.  The 
programmer can associate any number of async event 
handlers with an async event, and the same handler can 
be associated with any number of events.  Async event 
handlers are schedulable entities and are constructed 
with the same set of parameters as a real-time thread; 
thus they can participate in feasibility analysis, etc.  
However, there is not necessarily a distinct thread 
associated with each handler.  The programmer can use a 
bound async event handler if it is necessary to dedicate a 
unique thread to a handler. 

When an async event is fired, all associated handlers 
are scheduled.  A programmer-overridable method on 
the handler establishes the behavior.  If the same event is 
fired multiple times, the handler’s actions are 
sequentialized.  In the interest of efficiency and 
simplicity, no data are passed automatically from the 
event to the handler.  The programmer can define the 
logic necessary to buffer data, or to deal with overload 
situations where not all events need to be processed. 

The async event model uses the same framework as 
event listeners in Java Beans and the AWT but 
generalizes and formalizes the handler semantics with 
thread-like behavior. 

3.4.2 Asynchronous Transfer of Control 
Asynchronous Transfer of Control (“ATC”) is a 

mechanism whereby a triggering thread (possibly an 
async event handler) can cause a target thread to branch 
unconditionally, without any explicit action from the 
target thread.  It is a controversial capability.  The 

triggering thread does not know what state the target 
thread is in when the ATC is initiated while, on the other 
side, the target thread needs to be coded very carefully if 
it is susceptible to ATC.  ATC also imposes a run-time 
cost even for programs that do not use the functionality.  
Nevertheless, there are situations in real-time programs 
where the alternative style (polling for a condition that 
can be asynchronously set) induces unwanted latency, 
and the user community identified several situations 
(timing out on an operation, or mode change) where 
ATC offers the appropriate semantic framework. 

A rudimentary ATC mechanism was present in the 
initial version of the Java language: the Thread 
methods stop(), destroy(), suspend() and 
resume().  Unfortunately a conflict between the ATC 
semantics and program reliability led to these methods’ 
deprecation (stop(), suspend(), resume()) or 
stylistic discouragement (destroy()).  If a thread is 
stopped while it holds a lock, the synchronized code is 
exited and the lock is released, but the object may be in 
an inconsistent state.  If a thread is destroyed while it 
holds a lock, the lock is not released, but then other 
threads attempting to acquire the lock will be 
deadlocked.  If a thread is suspended while it holds a 
lock, and the resuming thread needs that lock, then again 
a deadlock will ensue.   

The problem is that Baseline Java does not have the 
Ada concept of an “abort-deferred region”.  The RTSJ 
has introduced this concept, together with other semantic 
constraints, in the interest of providing ATC that is safe 
to use.  

Several guiding principles underlie the ATC design: 
• Susceptibility to ATC must be explicit in the 
affected code. 
• Even if code allows ATC, in some sections ATC 
must be deferred — in particular, in synchronized code. 
• An ATC does not return to the point where it was 
triggered (i.e. it is a “goto” rather than a subroutine call), 
since with resumptive semantics an arbitrary action 
could occur at arbitrary points. 
• If ATC is modeled through exception handling, the 
design needs to ensure that the exception is not caught 
by an unintended handler (for example a method with a 
catch clause for Throwable) 
• ATC needs to be expressive enough to capture 
several common idioms, including time-out, nested time-
out (with correct disposition when an “outer” timer 
expires before an “inner” timer),mode change, and 
thread termination. 

From the viewpoint of the target thread, ATC is 
modeled by exception handling.  The class 
AsynchronouslyInterruptedException (ab-
breviated “AIE”) extends InterruptedException 



from java.lang.  An ATC is initiated in the target 
thread by a triggering thread causing an instance of AIE 
to be thrown.  This is not done directly, since there is no 
guarantee that the target thread is executing in code 
prepared to catch the exception.  In any event there is no 
syntax in Java for one thread to asynchronously throw an 
exception in another thread1. 

ATC only occurs in code that explicitly permits it.  
The permission is the presence of a “throws AIE” clause 
on a method or constructor.  ATC is deferred in methods 
or constructors lacking such a clause, and is also 
deferred in synchronized code.  

The basic ATC construct is the doInter-
ruptible() method of AIE.  This method takes an 
Interruptible as parameter; the Interruptible 
interface defines the abstract methods run() (which 
has a “throws AIE” clause) and interrupt-
Action().  The target thread constructs an AIE 
instance aie, makes this instance available to a triggering 
thread, and then invokes aie.doInterrupt-
ible(obj)on an Interruptible object obj; this 
causes obj.run()to be invoked synchronously.  If the 
triggering thread invokes aie.fire() while the target 
thread is still executing run(), the target thread will be 
asynchronously interrupted as soon as it is outside of 
ATC-deferred code, run() will return, and the target 
thread will invoke obj.interruptAction().  Note 
that the throwing and handling of the AIE are 
encapsulated in the implementation of the fire and 
doInterruptible method.  Calling fire() too 
early (before doInterruptible has been invoked) 
or too late (after run has returned) has no effect on the 
target thread. 

The Timed class (a subclass of AIE) is provided as a 
convenience to deal with time out; the firing of the AIE 
is done by an implementation-provided async event 
handler rather than an explicit user thread. 

The RTSJ’s analog of Thread.stop is for a 
triggering thread to invoke interrupt() on a real-
time thread that is to be terminated.  The effect of 
interrupt() on a real-time thread is a generalization 
of the effect on a regular thread.  If interrupt() is 
invoked on a regular thread, an Interrupted-
Exception will be thrown when the thread is blocked.  
If interrupt() is invoked on a real-time thread, an 
AIE will be thrown when the thread is in asynchronously 
interruptible code.  (Deferring the interruption in 
synchronized code avoids the problem that led to the 
deprecation of Thread.stop.)  Moreover, since the 
AIE remains pending even if the exception is caught 

                                                           
1 The functionality is actually present in 

Thread.stop(), but this method is now deprecated. 

(unless logic in the handler explicitly disables the 
propagation) the effect of invoking interrupt() on a 
real-time thread will be to terminate the thread; the 
latency depends on the duration of non-ATC code in the 
method call stack. 

3.5 Time and Timers 
The RTSJ provides several ways to specify high-

resolution (nanosecond accuracy) time: as an absolute 
time, as a relative number of milliseconds and 
nanoseconds, and as a rational time (a frequency, i.e. a 
number of occurrences of an event per relative time).  In 
a relative time 64 bits (a long) are used for the 
milliseconds, and 32 bits (an int) for the nanoseconds. 

The rational time class is designed to simplify 
application logic where a periodic thread needs to run at 
a given frequency.  The implementation, and not the 
programmer, needs to account for round-off error in 
computing the interval between release points. 

The time classes provide relevant constructors, 
arithmetic and comparison methods, and utility 
operations.  These classes are used in constructors for the 
various release parameters classes. 

The RTSJ defines a default real-time clock which can 
be queried (for example to obtain the current time) and 
which is the basis for two kinds of timers: a one-shot 
timer, and a periodic timer.  Timer objects are instances 
of async events; the programmer can register an async 
event handler with a timer to obtain the desired behavior 
when the event is fired.  A handler for a periodic timer is 
similar to a real-time thread with periodic release 
parameters but is likely to be more efficient. 

3.6 Other Features 
The RTSJ provides a real-time system class 

analogous to java.lang.System, with “getter” and 
“setter” methods to access the real-time security 
manager and the maximum number of concurrent locks.  
It also supplies a binding to Posix signal handlers 
(required of the implementation if the underlying system 
supports Posix signals).  

4 Comparative Analysis 

4.1 The Two RT Java Specifications 
The main distinction between the two specifications 

is in their execution environment models. 
The Core Java specification approach is to build a 

Core program as a distinct entity from a Java virtual 
machine.  The intent is for the Core Java specification to 
be used to build small, fast, high performance stand-
alone programs that have been traditionally written in C, 



C++ and Ada.  These programs may communicate with a 
virtual machine in a controlled way. 

The RTSJ approach is to define an API with real-time 
functionality that can be implemented by a specially 
constructed Java virtual machine.  The intent is for the 
RTSJ specification to be used to build predictable real-
time threads that execute in the same environment as 
non-real-time threads within one virtual machine. 

It is interesting to conclude that a system could be 
composed of sub-systems that are implemented using 
both specifications.  For example, a system may require 
a high-performance micro kernel implemented using the 
Core Java specification, executing in conjunction with a 
JVM that is executing some predictable real-time 
threads, as well as using a wide range of standard APIs 
within background threads. 

This distinction in the execution environment model 
is also reflected in the goals and semantics of the 
specifications, for example: 
• The RTSJ specification is more of a scalable 
framework that can be implemented by a wide variety of 
virtual machines with differing characteristics, and 
executing over a variety of operating systems.  In 
contrast, the Core specification has more precise and 
fixed semantics that match the characteristics of 
traditional real-time kernels. 
• The RTSJ specification retains security of operation, 
for example by preventing dangling references, and by 
ensuring that ATC is deferred in synchronized code.  
This is consistent with Java design philosophy and the 
safety model of JVMs.  In contrast, the Core 
specification assumes that the Core programmer is a 
“trusted expert” and so provides more freedom and less 
safety; for example a dangling reference to an object in a 
released allocation context can occur; an ATC can 
trigger immediately within a priority-ceiling-locked 
protected object; and the stop() method does not 
unlock mutexes or release semaphores. 
• The RTSJ specification concentrates on adding 
predictability to JVM thread operations, but does not aim 
to deal with memory footprint, performance, or interrupt 
latency.  In contrast, the Core specification has been 
designed to optimize on performance, footprint and 
latency.  Kelvin Nilsen has summarized this distinction 
as follows: “The RTSJ makes the Java platform more 
real-time, whereas the Core Java specification makes 
real-time more Java-like.” 

 
The other major distinction between the two 

specifications is in their licensing models.  The RTSJ 
specification is an extension to the trademarked Java 
definition and hence is subject to Sun Microsystems, Inc 
licensing requirements.  However the Core specification 
is independent of the trademark (and hence licensing 

requirements) and is being put forward as an ISO 
standard specification via the J Consortium’s approval to 
be a submitter of ISO Publicly Available Specifications. 

4.2 Comparison with Ada95 

4.2.1 Similarity to Ada Real-Time Annex 
Almost all new elements in the two real-time Java 

specifications can be found in either the Ada95 core 
language definition, or its Systems Programming or 
Real-Time Annex [Ada95].  These include:  
• A guaranteed large range of priority values; 
• Well-defined thread scheduling that must include 
FIFO_Within_Priorities policy; 
• Addition of Protected Objects to the existing 
Synchronized objects and methods, that (may) prohibit 
voluntary suspension operations, and that define a 
Ceiling Priority for implementation of mutual exclusion 
(c.f. Ceiling_Locking policy); 
• Addition of asynchronous transfer of control 
triggered by either time expiry or an asynchronous event; 
• Allocation of, and access to, objects at fixed 
physical memory locations, or in the current stack frame; 
• Suspend / Resume primitives for threads (c.f. 
suspension objects); 
• Dynamic priority change for threads (c.f. 
Ada.Dynamic_Priorities); 
• Absolute time delay (c.f. delay_until statement); 
• Use of nanosecond precision in timing operations 
(c.f. Ada.Real_Time.Time); 
• Definition of interrupt handlers and operations for 
static and dynamic attachment. 

 
In addition, the High Integrity Profile of the Core 

Java specification has the same execution model as that 
of the Ravenscar Profile, as discussed in section 2.7. 

Thus the real time extensions for Java are quite 
compatible with the Ada95 Real-Time Annex and 
Ravenscar Profile execution models, which encourages 
the view that both Ada and Real-Time Java 
implementations could be used to develop parallel 
subsystems that execute in a common underlying 
environment. 

4.2.2 Dissimilarity to Ada R-T Annex 
The following design decisions were taken during the 

development of the Core Java specification that conflict 
with those taken for Ada95: 
• Low-level POSIX-like synchronization primitives, 
such as mutexes and signaling and counting semaphores, 
are included as well as the higher-level of abstraction 



provided by synchronized objects (mutual exclusion 
regions), monitors and protected objects.  Ada95 chose 
to provide only the higher level of abstraction such as the 
protected object and the suspension object.  There is 
therefore greater scope for application error using the 
Core Java specification, such as accidentally leaving a 
mutex locked. 
• More than one locking policy is present.  
Synchronized objects and semaphores require only 
mutual exclusion properties and so are subject to priority 
inversion problems.  Mutex locks and monitors require 
priority inheritance to be applied in addition to mutual 
exclusion.  Protected objects require instead the priority 
ceiling protocol to be applied as for 
Ceiling_Locking in Ada95.  The requirement on 
the underlying environment to support both priority 
inheritance and ceiling locking was one that Ada95 
chose not to impose.  Also the introduction of protected 
objects with Ceiling_Locking in Ada95 has 
implicitly deprecated the Ada83 rendezvous that was 
prone to priority inversion problems, thereby providing a 
single mutual exclusion mechanism that is optimal for 
static timing analysis. 
• The only mutual exclusion region that is abort-
deferred is the Atomic interface used by interrupt 
handlers.  In particular, protected object and monitor 
operations are not abort-deferred regions.  This removes 
the integrity guarantees that a designer may well be 
relying on in a protected operation.  Use of the Atomic 
interface introduces a number of coding restrictions that 
limit its general applicability (in particular all the code 
must be execution-time analyzable) and so this may not 
be appropriate for all protected object scenarios.  In 
Ada95, all protected operations are abort-deferred and 
there is no restriction on the content of the code other 
than that it does not voluntarily suspend. 
• There is no notion of requeue in the Core Java 
specification.  Ada95 requeue has been found to be 
useful in designing scenarios such as servers that provide 
multi-step service. 
• Asynchronous transfer of control includes the ability 
to resume execution at the point of interruption (i.e. 
effectively discarding the transfer of control) which 
could be useful for example to ignore an execution time 
overrun signal in certain context-specific situations.  
This option is not provided by Ada95. 
• Dangling references to objects within allocation 
contexts can occur in the Core Java specification.  Ada95 
semantics were carefully crafted to prevent dangling 
references except via unchecked programming. 

 
Some of the RTSJ design decisions that conflict with 

the Ada 95 core language and Real-Time Annex follow: 

• The RTSJ has a more general view of scheduling 
and dispatching, with feasibility analysis, overrun and 
deadline miss handlers, rational time, etc. 
• For the fixed-priority preemptive policy, the RTSJ 
does not dictate where in the ready queue a preempted 
thread is placed.  In the Ada Real-Time Annex, this is 
deterministic (the preempted task is placed at the head of 
the queue for its priority). 
• The RTSJ’s priority ceiling emulation monitor 
control policy requires queuing in one supported model 
that allows a thread holding a priority ceiling lock to 
block. 
• There is no direct Ada analog to the RTSJ’s async 
event model (in particular the many-to-many relationship 
between events and handlers). 
• In the RTSJ, an ATC is not deferred in finally 
clauses (this is because the bytecodes do not directly 
reflect where finally clauses were present in the source 
code).  In Ada, abort is deferred during finalization. 

5 Looking Ahead 
We can look back on the ’90s as the decade of 

revolutionary communication for individuals and for 
business, primarily via the internet.  Use of e-mail, the 
web, mobile phones, e-banking etc has become part of 
everyday life, and e-business is an extremely rapidly 
growing industry.  The Java execution environment has 
been most prominent in the software part of this new 
technology, with its write-once-run-anywhere capability 
inherent in its bytecodes and in the JVM, and with its 
abundant highly practical and portable APIs.  But many 
of today’s Java applications do not have demanding size 
and performance constraints. 

So what will the next decade bring us?  The next 
revolution could well be in communicating embedded 
devices.  Some have predicted a trillion communicating 
devices by 2025, affecting almost all aspects of our daily 
lives.  In at least some of these cases, an embedded 
device application environment will have demanding 
size and performance constraints, and will also require 
high availability, high integrity and hard real time 
deadlines.  A growing number of these systems may 
even have safety critical requirements. 

The Real-Time Java initiatives presented in this paper 
illustrate that the Java community as a whole, and its 
tool vendors and those who promote international 
standards in particular, are taking real-time requirements 
and embedded system constraints very seriously, and are 
preparing Java, its JVMs and its APIs for the next 
revolution.  So what of Ada95, or its next revision 
Ada0Y? 

Ada enthusiasts can argue quite validly that Ada95 
environments can already meet the stringent 



requirements of embedded systems better than any other, 
and that Ada’s suitability for use in high integrity and 
safety critical is second to none.  However it is clear that 
Ada did not figure in the communications revolution of 
the 90’s, and does not enter the new millennium with an 
expanding community.  So can Ada, with all its excellent 
reputation within high integrity and safety critical 
embedded systems, find a role in the new revolution as 
the battleground moves into Ada’s own strongholds? 

The key to Ada’s successful future almost certainly 
lies in seamless co-operation with the Java environment, 
rather than in competing with it.  It is interesting to see 
how the two language environments are starting to 
converge somewhat.  This cross-fertilization could be 
known as the “Jada effect”. 

We have already seen in this paper that many of the 
new ideas for Real-Time Java have been borrowed from 
Ada, such as those needed for predictability and 
deterministic schedulability analysis.  Baseline Java had 
already used Ada’s exception model, and now we see 
that the real-time extensions have equivalents for 
protected objects including entries, priority ceiling 
emulation, well-defined thread scheduling policies, 
absolute delay, high precision timers, suspension objects, 
dynamic priority change, interrupt handlers, 
asynchronous transfer of control, access to physical 
memory, abort-deferred regions etc.  So Java is 
definitely evolving towards Ada in the real-time domain. 

In similar fashion, Ada is evolving towards Java.  The 
Ada95 revision already brought in support for a 
comprehensive object oriented programming model not 
dissimilar to that in Java, including single inheritance 
hierarchies, constructors and finalizers etc.  The next 
revision of Ada (Ada0Y) may well see the addition of 
support for Java-style interfaces, thereby providing the 
same limited form of multiple inheritance as in Java 
(from one class plus any number of interfaces).  
Furthermore, Ada0Y may relax the rules that currently 
prevent mutually-dependent package specifications, via a 
new with type construct.  This would allow mutually-
dependent Java classes to be modeled as Ada packages 
that each define a tagged type plus its primitive 
operations, without having kludges to workaround 
circularities in the “with” dependencies.  Finally there is 
even some discussion about whether to allow a Java-like 
OOP syntax for invoking the primitive operations of a 
tagged type.  This could be used instead of the traditional 
procedure calling style that requires some rules to 
identify which parameter is the object that controls the 
dynamic dispatching, replacing it with an OOP style 
along the lines of object'Operation(parameters). 

So it seems that both Java and Ada are undergoing the 
Jada effect.  However as well as language convergence, 
it is also very important to have execution environment 
convergence if the two are going to co-exist happily.  

We have already seen some worthy attempts at 
integration between Java and Ada execution 
environments.  A few different approaches are 
mentioned below: 
• Aonix’s AdaJNI [Flint00] makes use of the Java 
Native Interface that is provided with the Java 
Development Kit.  This approach allows Ada native 
programs to interact with Java classes and APIs that are 
executed by a local or remote JVM via Ada-style 
interface packages. 
• Ada Core Technologies JGNAT [ACT00] compiles 
Ada95 into Java bytecodes in standard class files.  This 
approach allows JVM-based programs to comprise a 
mixture of Ada and Java code.  Again, there is also the 
capability for the Ada code to access Java classes and 
APIs via Ada-style interface packages. 
• Ada ORB vendors e.g. [OIS] provide access to 
CORBA objects from Ada programs.  This approach 
allows a logically distributed, mixed-language (including 
Ada and Java) system to communicate using the 
CORBA client/server model. 

If Ada is to gain any kind of foothold in the new 
generation of communicating devices, we must build on 
foundations such as these.  The efforts of users and 
vendors alike within the Ada community need to be 
focused on developing and evolving Ada in ways that 
are compatible with the emerging requirements, not least 
a seamless co-existence with the new Real-Time Java 
execution environments, their JVMs and their APIs.  If 
we can achieve this goal, this can give a whole new lease 
of life to Lady Ada.  We may even want to rename her 
Lady Jada . 
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