
REAL-TIME CONVERGENCE OF
ADA AND JAVA

Ben Brosgol,
Ada Core Technologies,

79 Tobey Road,
Belmont, MA 02478

United States of America
brosgol@gnat.com

Brian Dobbing,
Praxis Critical Systems,

20 Manvers Street,
Bath BA1 1PX

United Kingdom
brian@praxis-cs.co.uk

Abstract

Two independent recent efforts have defined
extensions to the Java platform that intend to satisfy real-
time requirements. This paper summarizes the major
features of these efforts, compares them to each other
and to Ada 95’s Real-Time Annex, and argues that their
convergence with Ada95 may serve to complement
rather than compete with Ada in the real-time domain.

1 Introduction
Over the past several years the computing community

has been coming to grips with the Java platform, a
technology triad comprising a relatively simple Object-
Oriented Language, an extensive and continually
growing set of class libraries, and a virtual machine
architecture and class file format that provide portability
at the binary level. Java was first introduced as a
technology that could be safely exploited on “client”
machines on the Internet, with various levels of
protection against malicious or mischievous applets.
However, as interest in Java’s promise of “write once,
run anywhere” has increased, the platform’s application
domain has been expanding dramatically.

One area that has been attracting attention is real-time
systems. On the one hand, that should not be completely
surprising. The research project at Sun Microsystems
that spawned Java was attempting to design a technology
for embedded systems in home appliances, and
embedded systems typically have real-time constraints.
Moreover, Java is more secure than C and simpler than
C++, and it has found a receptive audience in users
dissatisfied with these languages. And unlike C and
C++, Java has a built-in model for concurrency (threads)
with low-level “building blocks” for mutual exclusion
and communication that seem to offer flexibility in the
design of multi-threaded programs. Parts of the Java
API address some real-time application areas (for
example javax.comm for manipulating serial and

parallel devices), and V1.3 of the Java Software
Development Kit has introduced a couple of utility
classes for timed events. Java therefore may seem a
viable candidate for real-time systems, especially to an
organization that has adapted Java as an enterprise
language.

However, even a casual inspection of Java reveals a
number of obstacles that interfere with real-time
programming. In this introductory section we will
summarize these issues and then briefly describe how
they have been addressed.

1.1 Challenges
The main problems for Java as a real-time technology

fall into several areas, mostly related to predictability.
• Thread model

Although Java semantics are consistently
deterministic for the sequential parts of the language
(e.g. the order of expression evaluation is defined as left-
to-right, references to uninitialized variables are
prevented) they are largely implementation-dependent
for thread scheduling. The Java Language Specification
explicitly states [JLS00, Section 17.12]:

“... threads with higher priority are generally
executed in preference to threads with lower priority.
Such preference is not, however, a guarantee that the
highest priority thread will always be running, and
thread priorities cannot be used to reliably implement
mutual exclusion.”

This flexibility makes it impossible to ensure that real-
time threads will meet their deadlines. The
implementation may or may not use priority as the
criterion for choosing a thread to make ready when a
lock is released. Even if it did, unbounded priority
inversions could still occur since there is no requirement
for the implementation to provide priority inversion
avoidance policies such as priority inheritance or priority
ceiling emulation. There is also no guarantee that
priority is used for selecting which thread is awakened

mailto:brosgol@gnat.com
mailto:brian@praxis-cs.co.uk

by a notify(), or which thread awakened by a
notifyAll() is selected to run.

Other facets of the thread model also interfere with
real-time requirements. The priority range (1 through
10) is too narrow, and the relative sleep() method is
not sufficient: the standard idiom for simulating
periodicity with this method can lead to a missed
deadline if the thread is preempted after computing the
relative delay but before being suspended.

A more detailed analysis of Java threads, with a
comparison to Ada’s tasking model, may be found in
[Brosgol98].
• Memory management

Despite its C-like syntax, Java belongs semantically
to a family of Object Oriented languages including
Simula, Smalltalk, and Eiffel: languages that provide no
mechanism for programmers to reclaim storage but
which instead are implemented with automatic memory
reclamation (“Garbage Collection” or “GC”). The idea
of garbage collection in a real-time program may sound
like a contradiction in terms, but there have been a
number of incremental and concurrent collectors that
attempt to address the predictability problems of a
classical mark-and-sweep strategy [Jones97].
Nevertheless, efficient real-time garbage collection is
still more a research topic than a mainstream technology.
This is a particular issue for Java, since all objects
(including arrays) go on the heap.
• Dynamic Semantics

One of the main attractions of Java is its run-time
flexibility. For example, classes are loaded dynamically,
intraspection allows the run-time interrogation of a
class’s properties, and cutting-edge compiler technology
allows optimized code to be generated during program
execution. Unfortunately, all of these capabilities
conflict with the traditional static environment
(“compile, download, run”) for real-time programs.
Implementing Java with static linking is possible but
difficult, and necessitates restrictions on the use of
certain language features.
• Asynchrony

A real-time program typically needs to respond to
asynchronous events generated by either hardware or
software, and sometimes needs to undergo asynchronous
transfer of control (“ATC”), for example to time out if
an operation is taking too long. The Java Beans and
AWT event registration and listener model is a
reasonable framework for asynchronous events but omits
semantic details critical to real-time programs, such as
the scheduling of event handlers. The interrupt()
method requires polling and thus is not an ATC
mechanism. The methods related to ATC have either
been deprecated (stop, suspend, resume) or are
discouraged because of their proneness to error

(destroy). Thus Java is rather weak in the area of
asynchrony.
• Object-Oriented Programming

OOP support is one of Java’s most highly touted
strengths, but the real-time community has traditionally
been very conservative in its programming style and still
views OOP with some skepticism. The dynamic nature
of OOP (for example the dynamic binding of instance
methods) interferes with static analyzability, and
Garbage Collection introduces unpredictability or high
latency.
• Application Program Interface

Class libraries that are to be used in real-time
programs need to be implemented specially in order to
ensure that their execution time be predictable. This is
partly a programming issue (e.g. choice of algorithms
and data structures) and partly a JVM implementation
issue (Garbage Collection strategy).
• Missing functionality

With the goal of language simplicity, the Java
designers intentionally omitted a number of features that
might be useful in a real-time program, such as general
unsigned integral types, strongly-typed scalars, and
enumeration types. Other omissions impinge on
programming in general, such as generic templates and
operator symbol overloading. The language and API
also lack system programming facilities for accessing the
underlying hardware (such as “peek” and “poke” to
access numeric data at physical addresses).
• Performance

Although “real time” does not mean “real fast”, run-
time performance cannot be ignored. Java has several
challenges in this area. The key to “write once, run
anywhere” is the JVM and the binary portability of class
files. But a software interpreter introduces overhead,
and hardware implementations are not mainstream
technology. Garbage Collection and the absence of
stack-resident objects have an obvious performance
impact, and there is also the problem that array
initializers result in run-time bytecodes to be performed,
versus having a ROMable image in the class file.

1.2 The NIST Requirements and the Two
Real-Time Java Efforts

The problems with Java as a real-time technology are
steep but not insurmountable. Given the potential market
and the fascinating technical issues it is not surprising
that real-time Java has been a topic of active
investigation. Probably the earliest work was by Kelvin
Nilsen in late 1995 and early 1996 [Nilsen96].
Subsequently Lisa Carnahan from the National Institute
for Standards and Technology in the U.S. (NIST) took
the lead in organizing a series of workshops to identify
the issues and to develop consensus-based requirements

for real-time extensions to the Java platform. The
culmination of this group’s efforts, which ultimately
included participation by 38 different entities, was a
document titled “Requirements for Real-Time
Extensions for the Java Platform”, published in
September 1999 [NIST99].

The NIST-sponsored effort focused on defining the
requirements for real-time Java extensions. That group
made a conscious choice not to develop a specification
for such extensions.

Two independent groups have undertaken to define
such specifications. One is the Real-Time Java Working
Group under Kelvin Nilsen from Newmonics; this group
was formed in November 1998 and is under the auspices
of a set of companies and individuals known as the J-
Consortium. The other effort is from the Real-Time for
Java Expert Group (“RTJEG”) under Greg Bollella (then
with IBM, now at Sun Microsystems). The RTJEG was
established under the terms of Sun’s Java Community
Process; the product of this effort is a specification, a
reference implementation, and a conformance test suite.
As of early 2001, the first draft of the specification has
been published [Bollella00], while the reference
implementation and the test suite formulation are in
progress.

The split into two efforts versus a single undertaking
was motivated by business considerations rather than
technical factors. Participation in the RTJEG required
signing an agreement with Sun Microsystems that some
organizations found problematic. However, the two
efforts ended up taking technical approaches that are
more complementary than duplicative. As will be seen
below when we cover the specifications in more detail,
the J-Consortium has focused on defining real-time
“core” kernel facilities external to a JVM, whereas the
RTJEG has defined an API that needs to be supported
within a JVM implementation. Indeed the J-Consortium
specification can be regarded as providing a set of kernel
services as might be found in an RTOS for Java.

2 Real-Time Core Specification

2.1 Summary
In order to establish a foundation upon which its

Real-Time Core Extensions to the Java platform
specification [JCons00] would be built, the J
Consortium’s Real-Time Java Working Group (RTJWG)
established a number of clarifying principles to augment
the full list of key requirements identified in the NIST
requirements document for real-time extensions to Java
[NIST99]. These working principles follow. For
purposes of this discussion, the term “Baseline Java”
refers to the 1.1 version of the Java language, as it has
been defined by Sun Microsystems, Inc, and “Core Java”

refers to an implementation of the Real-Time Core
Specification.
• The Core Java execution environment shall exist in
two forms: the dynamic one that is integrated with a Java
virtual machine and supports dynamic loading and
unloading of Core classes, and the static one that is
stand-alone and does not supporting dynamic class
loading.
• The Core Java dynamic execution environment shall
support limited cooperation with Baseline Java programs
running on the same Java virtual machine, with the
integration designed so that neither environment needs to
degrade the performance of the other.
• The Core Java specification shall define distinct
class hierarchies from those defined by Baseline Java.
• The Core Java specification shall enable the creation
of profiles which expand or subtract from the capabilities
of the Core Java foundation.
• The Core Java system shall support limited
cooperation with programs written according to the
specifications of these profiles, with the integration
designed so that neither environment needs to degrade
the performance of the other.
• The semantics of the Core Java specification shall
be sufficiently simple that interrupt handling latencies
and context switching overheads for Core Java programs
can match the latencies and context switching overheads
of today’s RTOS products running programs written in
C, C++ and Ada.
• The Core Java specification shall enable
implementations that offer throughputs comparable to
those offered by today’s optimizing C++ compilers,
except for semantic differences required, for example, to
check array subscripts.
• Core Java programs need not incur the run-time
overhead of coordinating with a garbage collector.
• Baseline Java components and components written
according to the specifications of profiles, shall be able
to read and write the data fields of objects that reside in
the Core Java object space.
• Security mechanisms shall prevent Baseline Java
and other external profile components from
compromising the reliability of Core Java components.
• Core Java programs shall be runnable on a wide
variety of different operating systems, with different
underlying CPUs, and integrated with different
supporting Baseline Java virtual machines. There shall
be a standard way for Baseline Java components to load
and execute Core Java components.

• The Core Java specification shall support the ability
to perform memory management of dynamic objects
under programmer control.
• The Core Java specification shall support a
deterministic concurrency and synchronization model
with features comparable to those in Real-Time
Operating Systems.
• The Core Java specification shall be designed to
support a small footprint, requiring no more than 100K
bytes for a typical static Core Java execution
environment.
• All Core Java classes shall be fully resolved and
initialized at the time they are loaded.

In summary, the Core Java execution environment:

• either is a plug-in module that can augment any
Baseline Java virtual machine. This allows users of the
Core Java execution environment to leverage the large
technology investment in current virtual machine
implementations, including byte-code verifiers, garbage
collectors, JustInTime compilers, dynamic loaders, and
symbolic debuggers;
• or can be configured to run without a Baseline Java
virtual machine. This allows users of the Core Java
execution environment to develop high performance
kernels deployed in very small memory footprints.

2.2 Concurrency and Synchronization

2.2.1 Scheduling and Priorities
The Core Java specification supports a large range of

priorities. Each implementation is required to support a
minimum of 128 distinct values, with the highest N
being used as interrupt priorities, where N is
implementation-defined. In addition, the Core Java
semantics require preemptive priority-based scheduling
as defined by the FIFO_Within_Priorities policy.
Support for time-slicing is also defined but not required.
This model is in marked contrast to Baseline Java's small
priority range (10 values) and absence of guarantee that
a higher priority task will preempt a low priority task
when it is ready to run. Alternative scheduling policies
may be specified via profiles.

The Core task class hierarchy is rooted at
CoreTask. A CoreTask object must be explicitly
started via the start() method. There are two
specialized extensions of CoreTask:
• The SporadicTask class defines tasks that are
readied by the occurrence of an event that is triggered
either periodically or via an explicit call to its fire()
method.

• The InterruptTask class defines tasks that are
readied by the occurrence of an interrupt event, making
them analogous to interrupt service routines.

2.2.2 Task Synchronization Primitives
Task synchronization is provided in the Core Java

specification via a number of different features, a first
group of which supports priority inversion avoidance
and a second group of which does not.

In the first group, Baseline Java-style usage of
synchronized methods and synchronized(this) constructs
are both supported and define transitive priority
inheritance to limit the effects of priority inversion. In
addition, traditional POSIX-style mutexes are supported,
and these also define transitive priority inheritance to be
applied when there is contention for the lock. Finally
there is support for Ada-style protected objects that are
locked using priority ceiling protocol (actually, the same
emulation using immediate ceiling locking that is
defined in Ada95), and that prohibit execution of
suspending operations, e.g. wait(). An extension of
the priority ceiling protocol interface, known as the
Atomic interface, is defined for InterruptTask work()
methods. This interface implies that all the code (at the
bytecode level) must be statically execution-time-
analyzable. The intent is to be able to guarantee the
static worst case execution time bounds on interrupt
handler execution.

In the second group, POSIX-style counting and
signaling semaphores are supported. There is no concept
of a single owner of a semaphore and hence there is no
priority inheritance on contention (and unbounded
priority inversion may result). A counting semaphore
may have count concurrent owners. A signaling
semaphore is similar to Ada’s suspension object except
that multiple tasks can be waiting for the signal. A
signal that occurs when there are no waiting tasks is a
no-op.

2.3 Memory Management

2.3.1 Core Object Space
The Core Java requirements include the provision of

security measures to ensure that the Baseline Java
domain cannot compromise the integrity of Core objects
in the dynamic Core execution environment. This is
realized in the specification by segregating Core objects
into their own object space that is quite separate from the
Baseline Java heap.

However another requirement of the dynamic Core
Java execution environment is to provide limited and
controlled communication with the Baseline Java
domain. This is achieved via the CoreRegistry class
that includes a publish() method to publish the

names of externally-visible Core objects. A lookup()
method is also provided for the Baseline Java domain to
obtain a reference to the published Core object.
However the Baseline Java domain is only permitted to
call special core-baseline methods that are explicitly
identified within the published object, and so access to
the Core object space is totally defined and controlled by
the operation of these methods.

2.3.2 Garbage Collection
A key requirement of the Core Java specification is

that the system need not incur the overhead of traditional
automatic garbage collection. This is intended to
provide the necessary performance and predictability,
avoiding overheads such as read/write barriers, object
relocation due to compaction, stack/object scanning and
object description tables, as well as avoiding the
determinism problems associated with executing the
garbage collector thread.

2.3.3 Core Object Allocation / Deallocation
A garbage collector is an essential component of a

Baseline Java VM due to Java’s object lifetime model,
which does not provide an explicit deallocation
operation, nor do the semantics provide known points for
an implementation to perform guaranteed implicit
deallocation. Hence the Core specification defines an
alternative strategy for memory allocation and
reclamation under programmer control. This is achieved
via the following:
• An object whose reference is declared locally within
a method can be explicitly identified as stackable, which
means that the object lifetime is asserted to be no greater
than that of the enclosing method. Various restrictions
are defined for stackable objects to prevent dangling
references. Thus an implementation may allocate
stackable objects on the runtime method stack in the
same way as Ada implementations of local variables.
• A class called AllocationContext is defined in the
Core specification that is somewhat analogous to Ada’s
Root_Storage_Pool type in that it provides a facility for
declaring an area for dynamic memory allocation
(including at a specific memory address) and the means
to control it programmatically. Each task automatically
implicitly allocates an allocation context upon creation,
and this storage area is used by default for allocation of
its non-stackable objects.

The base AllocationContext class provides a
release() method that reclaims all the objects in the
context in an unchecked way that could lead to dangling
references as for Ada’s Unchecked_Deallocation.
The model of allocation contexts allows an application to
implement various paradigms such as mark/release
heaps, and factory methods that construct objects in a

known storage area. In addition, all objects (with one
exception) that are allocated in implicit task-specific
allocation contexts are automatically reclaimed when the
task terminates either normally or via an external call to
its stop() method. The exceptional case is for objects
(and those they reference) that are published to the
Baseline Java domain. This ensures that the Baseline
Java domain cannot get a dangling reference from the
use of a published Core Java object. An implementation
of the dynamic Core Java execution environment is
therefore required to detect when published objects are
no longer accessible by the Baseline Java domain such
that they can become candidates for automatic
reclamation at task termination. Stackable objects are
not permitted to be published to Baseline Java.

2.4 Asynchrony
Asynchronous interaction between Core tasks is

achieved in the Core Java specification via events. There
is also the abort() method to kill a task. Two event
models are defined:
a) the firing and handling of asynchronous events
b) asynchronous transfer of control.

2.4.1 Asynchronous Events
Three kinds of asynchronous event are defined by the

Core Java specification:
• PeriodicEvent is defined to support periodic tasks.
The event fires at the start of each period which causes
the associated periodic event handler task to become
ready to execute its work() method.
• SporadicEvent is defined to support sporadic tasks
that are triggered by software. The event is explicitly
fired by a task which causes the associated sporadic
event handler task to become ready to execute its
work() method
• InterruptEvent is defined to support interrupt
handling. The event can be explicitly fired by a task (to
achieve a software interrupt) or implicitly fired by a
hardware interrupt. This causes the associated interrupt
event handler task to become ready to execute its
work() method, which must implement the Atomic
interface as described in section 2.2.2.

2.4.2 Asynchronous Transfer of Control
Asynchronous transfer of control is supported in the

Core Java specification by building upon the
asynchronous event model. A special ATCEvent class
is defined for the event itself. Each task construction
may specify a handler for ATCEvent that is invoked
whenever another task calls the signalAsync()
method, unless the task is currently in an abort-deferred

region. If the handler returns normally, the ATCEvent is
handled without causing a transfer of control, i.e. the
task resumes at the point at which it was interrupted.
This is useful in situations where the ATCEvent is to
have minimal or no effect, such as ignoring a missed soft
deadline.

Otherwise, if the handler returns by raising a special
ScopedException object and the task is in an ATC-
enabled execution scope, then the exception causes the
transfer of control in the task. An ATC-enabled scope is
created by constructing a ScopedException object and
having a try-catch clause that includes a handler for the
exception class.

The Core Java specification also defines certain
abort-deferred regions that defer the transfer of control
action, in particular Atomic scopes and finally clauses.
Note however that once an ATC-enabled region has been
entered, all method calls are susceptible to ATC other
than the abort-deferred regions mentioned above. Since
the Core Java specification rules prevent a Core program
from making direct method calls to the Baseline Java
domain, the problem does not arise of an ATC occurring
at any point within “legacy” Baseline Java code that was
not designed to expect that eventuality.

The ATC construct can be used for several common
idioms, such as preventing overrun by timing out a
sequence of actions, and for mode change. Special rules
apply to the handlers for ScopedException to ensure
that nested ATC scopes can be created without the
danger of an outer ATC triggering exception being
caught by an inner ATC catch clause.

2.5 Time
The Core Java specification defines a Time class that

includes methods to construct times in all granularities
from nanoseconds through to days. These can be used to
program periodic timer events to trigger cyclic tasks or
to timeout overrunning task execution.

In addition, the relative delay sleep() method and
the absolute delay sleepUntil() method provide a
programmatic means of coding periodic activity. In both
cases, the time quantum can be specified to the
nanosecond level.

There is also a method tickDuration() to return
the length of a clock tick.

2.6 Other Features
The Core Java specification also includes a

comprehensive low-level I/O interface for access to I/O
ports, and a class Unsigned for unsigned relational
operations. (Note that Baseline Java integral types are
signed with regard to relational operations, but unsigned
with regard to arithmetic.)

2.7 Profiles
A number of profiles of the Core specification are

under development. One of the most interesting to the
Ada community is the High Integrity Profile
[Dobbing00] which is designed to meet the requirements
of:
• Safety Critical / High Integrity, for which all the
data and executable code must undergo thorough
analysis and testing, and must be guaranteed not to be
corruptible by less trusted code;
• High Reliability / Fault Tolerance, for which the
code must be resilient enough to detect faults and to
recover with minimal disturbance to the overall system;
• Hard Real-Time, for which the timing of code
execution must be deterministic to ensure that deadlines
are met;
• Embedded, for which a small footprint and fast
execution are required.

These requirements are very similar to those that
steered the definition of the Ravenscar Profile
[Dobbing98] and hence it is not surprizing that the high
integrity profile provides similar functionality:
• The dynamic Core Java execution environment is
not supported (i.e. no direct interaction with a JVM);
• All tasks are constructed during program startup;
• sleepUntil() is supported, but sleep() is
not;
• Periodic, sporadic and interrupt event handler tasks
are supported;
• Signaling semaphores are supported, but counting
semaphores and mutexes are not;
• Protected objects are supported;
• All synchronized code is locked using priority
ceiling emulation (i.e. no priority inheritance)
• The scheduling policy is FIFO_Within_Priorities;
• Asynchronous abort is not supported;
• Asynchronous dynamic priority change is not
supported;
• Asynchronous suspension is not supported;
• Asynchronous transfer of control is not supported.

This profile allows the construction of a very small,

fast, deterministic runtime system that could ultimately
be a candidate even for formal certification.

3 RT Java Expert Group Specification

3.1 Summary
Before setting out on the design of the real-time

specification for Java (“RTSJ”), the RTJEG established
the following guiding principles:
• Applicability to particular Java environments.
Usage is not to be restricted to particular versions of the
Java Software Development Kit.
• Backward compatibility. Existing Java code can run
on any implementation of the RTSJ.
• “Write Once, Run Anywhere”. This is an important
goal but difficult to achieve for real-time systems (as a
trivial example of the difficulties, the correctness of a
real-time program depends on the timing properties of
the executing code, but different hardware platforms
have different performance characteristics).
• Current practice versus advanced features. The
RTSJ attempts to address current real-time practice but
also includes extensibility hooks to allow exploitation of
new technologies.
• Predictable execution. This is the highest priority
goal; performance or throughput may need to be
compromised in order to achieve it.
• No syntactic extension. The RTSJ does not define
new keywords or new syntactic forms.
• Allow variation in implementation decisions. The
RTSJ recognizes that different implementations will
make different decisions (for example a tradeoff between
performance and simplicity) and thus does not require
specific algorithms.

The resulting specification consists of the
javax.realtime package, an API whose
implementation requires specialized support in the JVM.
In summary, the design provides real-time functionality
in several areas:
• Thread scheduling and dispatching. The RTSJ
introduces the concept of a real-time thread and defines
both a traditional priority-based dispatching mechanism
and an extensible framework for implementation-defined
(and also user-defined) scheduling policies.
• Memory management. The RTSJ provides a general
concept of a memory area that may be used either
explicitly or implicitly for object allocations. Examples
of memory areas are the (garbage-collected) heap, and
also “immortal” memory whose objects persist for the
duration of an application’s execution. Another
important special case is a memory area that is used for
object allocations during the execution of a dynamically
determined “scope”, and which is automatically emptied
at the end of the scope. The RTSJ defines the concept of

a “no-heap real-time thread” which is not allowed to
reference the heap; this restriction means that such a
thread can safely preempt the Garbage Collector.
• Synchronization and resource sharing. The RTSJ
requires the implementation to supply one or more
mechanisms to avoid unbounded priority inversion, and
it defines two monitor control policies to meet this
requirement: priority inheritance and priority ceiling
emulation. The specification also defines several “wait
free queues” to allow a no-heap real-time thread and a
Baseline Java thread to safely synchronize on shared
objects.
• Asynchrony. The RTSJ defines a general event
model based on the framework found in the AWT and
Java Beans. An event can be generated from software or
from an interrupt handler. Event handlers behave like
threads and are schedulable entities. The design is
intended to be scalable to very large numbers of events
and event handlers (tens of thousands), although only a
small number of handlers are expected to be active
simultaneously. The RTSJ also defines a mechanism for
asynchronous transfer of control (“ATC”), supporting
common idioms such as timeout and mode change. The
affected code needs to explicitly permit ATC; thus code
that is not written to be asynchronously interruptible will
work correctly.
• Physical and “raw” memory access. The RTSJ
provides mechanisms for specialized and low-level
memory access. Physical memory is a memory area
with special hardware characteristics (for example flash
memory) and can contain arbitrary objects. Raw
memory allows “peek” and “poke” of integral and
floating-point variables at offsets from a given base
address.

3.2 Concurrency and Synchronization
The basis of the RTSJ’s approach to concurrency is

the class RealtimeThread, a subclass of Thread.

3.2.1 Scheduling and Priorities
The RTSJ requires a base scheduler that is fixed-

priority preemptive with at least 28 distinct priority
levels, above the 10 Baseline Java levels. An
implementation must map the 28 real-time priorities to
distinct values, but the 10 non-real-time levels are not
necessarily distinct.

Constructors for the RealtimeThread class allow
the programmer to supply scheduling parameters, release
parameters, memory parameters, a memory area, and
processing group parameters. The scheduling
parameters characterize the thread’s execution eligibility
(for example, its priority). A real-time thread can have a

priority in either the real-time range or the Baseline Java
range.

The release parameters identify the real-time thread’s
execution requirements and properties (whether it is
periodic, aperiodic or sporadic). Memory parameters
identify the maximum memory consumption allowed
and an upper bound on the heap allocation rate (used for
Garbage Collector pacing). Processing group parameters
allow modeling a collection of aperiodic threads with
bounded response time requirements.

Several release parameters classes are provided,
corresponding to the kinds of real-time threads that are
supported. A periodic parameters object specifies the
period, the cost (maximum computation time per
period), the deadline (which may be before the end of
the period), and handlers for cost overrun and missed
deadline. To create a periodic thread, the programmer
constructs a real-time thread with a periodic parameters
object as its release parameters. The run() method for
such a thread should invoke the method
waitForNextPeriod() to suspend itself after its
per-period work. The programmer may supply overrun
handlers to respond to two kinds of abnormality:
overrunning the budgeted cost (detecting this situation
requires support from the underlying platform and is
therefore not required of the implementation unless such
support exists), and missing a deadline. The overrun or
miss handlers can invoke the schedulePeriodic()
method to resume scheduling of the periodic thread.

An aperiodic parameters object is used for
schedulable entities that may become active based on the
occurrence of an asynchronous event or the invocation of
a notify() or notifyAll(). The aperiodic
parameters define the cost, deadline, overrun handler,
and miss handler analogously to periodic parameters.

A special case of aperiodic parameters is sporadic
parameters. A schedulable entity constructed with
sporadic parameters has a minimum inter-arrival time
between releases.

One of the RTSJ’s distinguishing capabilities is a
general-purpose extensible scheduling framework. An
instance of the Scheduler class manages the
execution of schedulable entities and may implement a
feasibility analysis algorithm. Through method calls a
real-time thread can be added to, or removed from, the
scheduler’s feasibility analysis; the release parameters
are used in this analysis. The scheduler’s
isFeasible() method returns true if the existing
schedulable entities are schedulable (i.e., will always
meet their deadlines) and false otherwise.

The priority-based scheduler is required to be the
default scheduler at system startup, but the programmer
can modify this at run time (for example setting an
Earliest-Deadline First scheduler, if one is supplied by
the implementation).

The priority-based scheduler is FIFO within priorities
and manages Baseline Java threads as well as real-time
threads. When a thread blocks it goes to the tail of the
blocked queue for its priority level, for the resource on
which it is blocked. When a blocked thread becomes
ready to run, or when a running thread invokes
yield(), it goes to the tail of the ready queue for its
priority level. When a thread’s priority is modified
explicitly through a method call the thread goes to the
tail of the relevant queue for its new priority level.
When a thread is preempted, the RTSJ does not specify
where in the ready queue for its priority the thread is
placed. This nondeterminism does not affect feasibility
analysis.

The priority-based scheduler is said to be fixed-
priority since it is not allowed to modify thread priorities
implicitly except for priority inversion avoidance (see
below). Thus schemes such as “priority aging” are not
allowed. Time slicing of the highest-priority threads is
permitted, although the implementation provides no
explicit support for such a policy.

3.2.2 Synchronization
An unbounded priority inversion in a thread

synchronizing on a locked object can lead to missed
deadlines, and the RTSJ accordingly requires that the
implementation supply one or more monitor control
policies to avoid this problem. By default the policy is
priority inheritance, but the RTSJ also defines a priority
ceiling emulation policy. Each policy can be selected
either globally or per-object and the choice can be
modified at run time. An implementation can supply a
specialized form of priority ceiling emulation that
prohibits a thread from blocking while holding a lock;
this avoids the need for mutexes and queues in the
implementation.

A subtle problem seems to arise if a Baseline Java
thread and a no-heap real-time thread attempt to
communicate through a synchronized object (such an
object cannot be in the heap, but it may be in immortal
memory). The apparently troublesome scenario is the
following:

1. The regular thread locks the object.
2. The garbage collector preempts and starts to run.
3. The no-heap real-time thread preempts the

garbage collector, with the heap possibly in an
inconsistent state.

4. The no-heap real-time thread attempts to
synchronize on the object currently locked by the
regular thread.

5. The regular thread inherits the no-heap real-time
thread’s priority and resumes execution.

6. The regular thread allocates an object in the heap,
but this can corrupt the heap (which might be in
an inconsistent state).

In fact the RTSJ semantics prevent this problem
although at the price of extra latency for the no-heap
real-time thread. When the regular thread attempts to
allocate an object at step 6, it will not be able to do so
since the garbage collector holds the lock on the heap.
Thus the garbage collector will have its priority boosted
(by priority inheritance), and when it releases the lock
the heap will be in a consistent state so that the Baseline
Java thread can continue in its “critical section” of code
synchronized on the object it is sharing with the no-heap
real-time thread.

The price for a consistent heap is extra latency, since
the no-heap real-time thread now needs to wait for the
Garbage Collector. The RTSJ allows the programmer to
avoid this latency through wait-free queues; Baseline
threads and no-heap real-time threads can use such
queues to communicate without blocking.

3.3 Memory Management
Perhaps the most difficult issue for the RTSJ was the

question of how to cope with garbage collection (“GC”).
Requiring specific GC performance or placing
constraints on GC-induced thread latency would have
violated several guiding principles. Instead the opposite
approach was taken: the RTSJ makes no assumptions
about the GC algorithm; indeed in some environments
there might not even be a garbage collector.

The key concept is the notion of a memory area, a
region in which objects are allocated. The garbage-
collected heap is an example of a memory area. Another
memory area is immortal memory: a region in which
objects are not garbage collected or relocated and thus
persist for the duration of the program’s execution.
More flexibility is obtained through scoped memory
areas, which can be explicitly constructed by the
programmer. Each scoped memory area contains objects
that exist only for a fixed duration of program execution.
The heap and immortal memory can be used by either
regular threads or real-time threads; scoped memory can
be used only by real-time threads.

Common to any memory area is an enter()
method which takes a Runnable as a parameter. When
enter() is invoked for a memory area, that area
becomes active, and the Runnable object’s run()
method is invoked synchronously. The memory area is
then used for all object allocations through “new”
(including those in methods invoked from run()
whether directly or indirectly) until either another
memory area becomes active or the enter() method
returns. When enter() returns, the previous active
area again becomes active.

A memory area may be provided to a real-time thread
constructor; it is then made active for that real-time
thread’s run() method when the thread is started.

Memory areas may also be used for “one shot”
allocation, through factory methods that construct
objects or arrays in the associated area.

Scoped memory may be viewed as a generalization of
a method’s stack frame. Indeed, early in the design the
RTJEG considered providing a mechanism through
which objects allocated in a method would be stored on
the stack instead of the heap, with automatic reclamation
at method exit instead of garbage collection. Standard
class libraries could then be rewritten with the same
external specifications (public members, method
signatures and return type) but with an implementation
that used the stack versus the heap for objects used only
locally. To prevent dangling references a check would
be needed (no assignment of a stack object reference
where the target reference is longer lived than the
source). Some sort of check (either at compile time or
run time) is inevitable. However, the reason that a
simple stack-based object scheme was eventually
rejected is that a reference to a local object could not be
safely returned to a caller. Thus the goal of using
specially-implemented versions of existing APIs would
not be achievable.

Instead the RTSJ has generalized the concept of
storing local objects on the stack. A scoped memory
area is used not just for one method invocation but for
the “closure” of all methods invoked from a
Runnable’s run() method. The objects within the
memory area are not subject to relocation or collection,
and an assignment of a scoped reference to another
reference is checked (in general at run time) to prevent
dangling references. Scopes may be nested: while one
scoped memory area is active, another may be entered,
and in fact the same scoped memory area may be entered
while in use by an outer scope. When the outermost
scope is exited (i.e., when the earliest enter() for a
given scoped memory area returns) the area is reset so
that it contains no objects. A common idiom is a while
or for loop that invokes enter() on a scoped
memory area at each iteration. All objects allocated
during the iteration are effectively flushed when
enter() returns, so there is no storage leakage. The
entire memory area is released when it is no longer
accessible. In general the implementation needs to use a
reference count scheme or its equivalent for this purpose.

The RTSJ provides two main non-abstract classes for
scoped memory: “LT” memory (linear time) and “VT”
memory (“variable time”). Object allocation and default
initialization for LT memory must be implemented to be
linear in the size of the object; no such constraint is
imposed on VT memory. In practice, the difference
between the two is that the implementation must allocate
the entire memory region used for LT memory (although
not necessarily contiguously) whereas for VT memory

only an initial region needs to be allocated in advance,
with further chunks added as necessary.

The RTSJ also provides several more specialized
kinds of memory area. Support for physical memory
(i.e. memory with special characteristics) is offered
through immortal physical memory and scoped physical
memory. This can be useful for efficiency; for example
the programmer may want to allocate a set of objects in a
fast-access cache. The raw memory access and raw
memory float access memory areas offer low-level
access (“peek” and “poke”) to integral and floating-point
data, respectively.

3.4 Asynchrony
The RTSJ supplies two mechanisms relevant to

asynchronous communication: asynchronous event
handling, and asynchronous transfer of control.

3.4.1 Asynchronous Event Handling
The RTSJ defines the concepts of an asynchronous

event and an asynchronous event handler, and it
specifies the relationship between the two.

An async event can be triggered either by a software
thread or by a “happening” external to the JVM. The
programmer can associate any number of async event
handlers with an async event, and the same handler can
be associated with any number of events. Async event
handlers are schedulable entities and are constructed
with the same set of parameters as a real-time thread;
thus they can participate in feasibility analysis, etc.
However, there is not necessarily a distinct thread
associated with each handler. The programmer can use a
bound async event handler if it is necessary to dedicate a
unique thread to a handler.

When an async event is fired, all associated handlers
are scheduled. A programmer-overridable method on
the handler establishes the behavior. If the same event is
fired multiple times, the handler’s actions are
sequentialized. In the interest of efficiency and
simplicity, no data are passed automatically from the
event to the handler. The programmer can define the
logic necessary to buffer data, or to deal with overload
situations where not all events need to be processed.

The async event model uses the same framework as
event listeners in Java Beans and the AWT but
generalizes and formalizes the handler semantics with
thread-like behavior.

3.4.2 Asynchronous Transfer of Control
Asynchronous Transfer of Control (“ATC”) is a

mechanism whereby a triggering thread (possibly an
async event handler) can cause a target thread to branch
unconditionally, without any explicit action from the
target thread. It is a controversial capability. The

triggering thread does not know what state the target
thread is in when the ATC is initiated while, on the other
side, the target thread needs to be coded very carefully if
it is susceptible to ATC. ATC also imposes a run-time
cost even for programs that do not use the functionality.
Nevertheless, there are situations in real-time programs
where the alternative style (polling for a condition that
can be asynchronously set) induces unwanted latency,
and the user community identified several situations
(timing out on an operation, or mode change) where
ATC offers the appropriate semantic framework.

A rudimentary ATC mechanism was present in the
initial version of the Java language: the Thread
methods stop(), destroy(), suspend() and
resume(). Unfortunately a conflict between the ATC
semantics and program reliability led to these methods’
deprecation (stop(), suspend(), resume()) or
stylistic discouragement (destroy()). If a thread is
stopped while it holds a lock, the synchronized code is
exited and the lock is released, but the object may be in
an inconsistent state. If a thread is destroyed while it
holds a lock, the lock is not released, but then other
threads attempting to acquire the lock will be
deadlocked. If a thread is suspended while it holds a
lock, and the resuming thread needs that lock, then again
a deadlock will ensue.

The problem is that Baseline Java does not have the
Ada concept of an “abort-deferred region”. The RTSJ
has introduced this concept, together with other semantic
constraints, in the interest of providing ATC that is safe
to use.

Several guiding principles underlie the ATC design:
• Susceptibility to ATC must be explicit in the
affected code.
• Even if code allows ATC, in some sections ATC
must be deferred — in particular, in synchronized code.
• An ATC does not return to the point where it was
triggered (i.e. it is a “goto” rather than a subroutine call),
since with resumptive semantics an arbitrary action
could occur at arbitrary points.
• If ATC is modeled through exception handling, the
design needs to ensure that the exception is not caught
by an unintended handler (for example a method with a
catch clause for Throwable)
• ATC needs to be expressive enough to capture
several common idioms, including time-out, nested time-
out (with correct disposition when an “outer” timer
expires before an “inner” timer),mode change, and
thread termination.

From the viewpoint of the target thread, ATC is
modeled by exception handling. The class
AsynchronouslyInterruptedException (ab-
breviated “AIE”) extends InterruptedException

from java.lang. An ATC is initiated in the target
thread by a triggering thread causing an instance of AIE
to be thrown. This is not done directly, since there is no
guarantee that the target thread is executing in code
prepared to catch the exception. In any event there is no
syntax in Java for one thread to asynchronously throw an
exception in another thread1.

ATC only occurs in code that explicitly permits it.
The permission is the presence of a “throws AIE” clause
on a method or constructor. ATC is deferred in methods
or constructors lacking such a clause, and is also
deferred in synchronized code.

The basic ATC construct is the doInter-
ruptible() method of AIE. This method takes an
Interruptible as parameter; the Interruptible
interface defines the abstract methods run() (which
has a “throws AIE” clause) and interrupt-
Action(). The target thread constructs an AIE
instance aie, makes this instance available to a triggering
thread, and then invokes aie.doInterrupt-
ible(obj)on an Interruptible object obj; this
causes obj.run()to be invoked synchronously. If the
triggering thread invokes aie.fire() while the target
thread is still executing run(), the target thread will be
asynchronously interrupted as soon as it is outside of
ATC-deferred code, run() will return, and the target
thread will invoke obj.interruptAction(). Note
that the throwing and handling of the AIE are
encapsulated in the implementation of the fire and
doInterruptible method. Calling fire() too
early (before doInterruptible has been invoked)
or too late (after run has returned) has no effect on the
target thread.

The Timed class (a subclass of AIE) is provided as a
convenience to deal with time out; the firing of the AIE
is done by an implementation-provided async event
handler rather than an explicit user thread.

The RTSJ’s analog of Thread.stop is for a
triggering thread to invoke interrupt() on a real-
time thread that is to be terminated. The effect of
interrupt() on a real-time thread is a generalization
of the effect on a regular thread. If interrupt() is
invoked on a regular thread, an Interrupted-
Exception will be thrown when the thread is blocked.
If interrupt() is invoked on a real-time thread, an
AIE will be thrown when the thread is in asynchronously
interruptible code. (Deferring the interruption in
synchronized code avoids the problem that led to the
deprecation of Thread.stop.) Moreover, since the
AIE remains pending even if the exception is caught

1 The functionality is actually present in

Thread.stop(), but this method is now deprecated.

(unless logic in the handler explicitly disables the
propagation) the effect of invoking interrupt() on a
real-time thread will be to terminate the thread; the
latency depends on the duration of non-ATC code in the
method call stack.

3.5 Time and Timers
The RTSJ provides several ways to specify high-

resolution (nanosecond accuracy) time: as an absolute
time, as a relative number of milliseconds and
nanoseconds, and as a rational time (a frequency, i.e. a
number of occurrences of an event per relative time). In
a relative time 64 bits (a long) are used for the
milliseconds, and 32 bits (an int) for the nanoseconds.

The rational time class is designed to simplify
application logic where a periodic thread needs to run at
a given frequency. The implementation, and not the
programmer, needs to account for round-off error in
computing the interval between release points.

The time classes provide relevant constructors,
arithmetic and comparison methods, and utility
operations. These classes are used in constructors for the
various release parameters classes.

The RTSJ defines a default real-time clock which can
be queried (for example to obtain the current time) and
which is the basis for two kinds of timers: a one-shot
timer, and a periodic timer. Timer objects are instances
of async events; the programmer can register an async
event handler with a timer to obtain the desired behavior
when the event is fired. A handler for a periodic timer is
similar to a real-time thread with periodic release
parameters but is likely to be more efficient.

3.6 Other Features
The RTSJ provides a real-time system class

analogous to java.lang.System, with “getter” and
“setter” methods to access the real-time security
manager and the maximum number of concurrent locks.
It also supplies a binding to Posix signal handlers
(required of the implementation if the underlying system
supports Posix signals).

4 Comparative Analysis

4.1 The Two RT Java Specifications
The main distinction between the two specifications

is in their execution environment models.
The Core Java specification approach is to build a

Core program as a distinct entity from a Java virtual
machine. The intent is for the Core Java specification to
be used to build small, fast, high performance stand-
alone programs that have been traditionally written in C,

C++ and Ada. These programs may communicate with a
virtual machine in a controlled way.

The RTSJ approach is to define an API with real-time
functionality that can be implemented by a specially
constructed Java virtual machine. The intent is for the
RTSJ specification to be used to build predictable real-
time threads that execute in the same environment as
non-real-time threads within one virtual machine.

It is interesting to conclude that a system could be
composed of sub-systems that are implemented using
both specifications. For example, a system may require
a high-performance micro kernel implemented using the
Core Java specification, executing in conjunction with a
JVM that is executing some predictable real-time
threads, as well as using a wide range of standard APIs
within background threads.

This distinction in the execution environment model
is also reflected in the goals and semantics of the
specifications, for example:
• The RTSJ specification is more of a scalable
framework that can be implemented by a wide variety of
virtual machines with differing characteristics, and
executing over a variety of operating systems. In
contrast, the Core specification has more precise and
fixed semantics that match the characteristics of
traditional real-time kernels.
• The RTSJ specification retains security of operation,
for example by preventing dangling references, and by
ensuring that ATC is deferred in synchronized code.
This is consistent with Java design philosophy and the
safety model of JVMs. In contrast, the Core
specification assumes that the Core programmer is a
“trusted expert” and so provides more freedom and less
safety; for example a dangling reference to an object in a
released allocation context can occur; an ATC can
trigger immediately within a priority-ceiling-locked
protected object; and the stop() method does not
unlock mutexes or release semaphores.
• The RTSJ specification concentrates on adding
predictability to JVM thread operations, but does not aim
to deal with memory footprint, performance, or interrupt
latency. In contrast, the Core specification has been
designed to optimize on performance, footprint and
latency. Kelvin Nilsen has summarized this distinction
as follows: “The RTSJ makes the Java platform more
real-time, whereas the Core Java specification makes
real-time more Java-like.”

The other major distinction between the two

specifications is in their licensing models. The RTSJ
specification is an extension to the trademarked Java
definition and hence is subject to Sun Microsystems, Inc
licensing requirements. However the Core specification
is independent of the trademark (and hence licensing

requirements) and is being put forward as an ISO
standard specification via the J Consortium’s approval to
be a submitter of ISO Publicly Available Specifications.

4.2 Comparison with Ada95

4.2.1 Similarity to Ada Real-Time Annex
Almost all new elements in the two real-time Java

specifications can be found in either the Ada95 core
language definition, or its Systems Programming or
Real-Time Annex [Ada95]. These include:
• A guaranteed large range of priority values;
• Well-defined thread scheduling that must include
FIFO_Within_Priorities policy;
• Addition of Protected Objects to the existing
Synchronized objects and methods, that (may) prohibit
voluntary suspension operations, and that define a
Ceiling Priority for implementation of mutual exclusion
(c.f. Ceiling_Locking policy);
• Addition of asynchronous transfer of control
triggered by either time expiry or an asynchronous event;
• Allocation of, and access to, objects at fixed
physical memory locations, or in the current stack frame;
• Suspend / Resume primitives for threads (c.f.
suspension objects);
• Dynamic priority change for threads (c.f.
Ada.Dynamic_Priorities);
• Absolute time delay (c.f. delay_until statement);
• Use of nanosecond precision in timing operations
(c.f. Ada.Real_Time.Time);
• Definition of interrupt handlers and operations for
static and dynamic attachment.

In addition, the High Integrity Profile of the Core

Java specification has the same execution model as that
of the Ravenscar Profile, as discussed in section 2.7.

Thus the real time extensions for Java are quite
compatible with the Ada95 Real-Time Annex and
Ravenscar Profile execution models, which encourages
the view that both Ada and Real-Time Java
implementations could be used to develop parallel
subsystems that execute in a common underlying
environment.

4.2.2 Dissimilarity to Ada R-T Annex
The following design decisions were taken during the

development of the Core Java specification that conflict
with those taken for Ada95:
• Low-level POSIX-like synchronization primitives,
such as mutexes and signaling and counting semaphores,
are included as well as the higher-level of abstraction

provided by synchronized objects (mutual exclusion
regions), monitors and protected objects. Ada95 chose
to provide only the higher level of abstraction such as the
protected object and the suspension object. There is
therefore greater scope for application error using the
Core Java specification, such as accidentally leaving a
mutex locked.
• More than one locking policy is present.
Synchronized objects and semaphores require only
mutual exclusion properties and so are subject to priority
inversion problems. Mutex locks and monitors require
priority inheritance to be applied in addition to mutual
exclusion. Protected objects require instead the priority
ceiling protocol to be applied as for
Ceiling_Locking in Ada95. The requirement on
the underlying environment to support both priority
inheritance and ceiling locking was one that Ada95
chose not to impose. Also the introduction of protected
objects with Ceiling_Locking in Ada95 has
implicitly deprecated the Ada83 rendezvous that was
prone to priority inversion problems, thereby providing a
single mutual exclusion mechanism that is optimal for
static timing analysis.
• The only mutual exclusion region that is abort-
deferred is the Atomic interface used by interrupt
handlers. In particular, protected object and monitor
operations are not abort-deferred regions. This removes
the integrity guarantees that a designer may well be
relying on in a protected operation. Use of the Atomic
interface introduces a number of coding restrictions that
limit its general applicability (in particular all the code
must be execution-time analyzable) and so this may not
be appropriate for all protected object scenarios. In
Ada95, all protected operations are abort-deferred and
there is no restriction on the content of the code other
than that it does not voluntarily suspend.
• There is no notion of requeue in the Core Java
specification. Ada95 requeue has been found to be
useful in designing scenarios such as servers that provide
multi-step service.
• Asynchronous transfer of control includes the ability
to resume execution at the point of interruption (i.e.
effectively discarding the transfer of control) which
could be useful for example to ignore an execution time
overrun signal in certain context-specific situations.
This option is not provided by Ada95.
• Dangling references to objects within allocation
contexts can occur in the Core Java specification. Ada95
semantics were carefully crafted to prevent dangling
references except via unchecked programming.

Some of the RTSJ design decisions that conflict with

the Ada 95 core language and Real-Time Annex follow:

• The RTSJ has a more general view of scheduling
and dispatching, with feasibility analysis, overrun and
deadline miss handlers, rational time, etc.
• For the fixed-priority preemptive policy, the RTSJ
does not dictate where in the ready queue a preempted
thread is placed. In the Ada Real-Time Annex, this is
deterministic (the preempted task is placed at the head of
the queue for its priority).
• The RTSJ’s priority ceiling emulation monitor
control policy requires queuing in one supported model
that allows a thread holding a priority ceiling lock to
block.
• There is no direct Ada analog to the RTSJ’s async
event model (in particular the many-to-many relationship
between events and handlers).
• In the RTSJ, an ATC is not deferred in finally
clauses (this is because the bytecodes do not directly
reflect where finally clauses were present in the source
code). In Ada, abort is deferred during finalization.

5 Looking Ahead
We can look back on the ’90s as the decade of

revolutionary communication for individuals and for
business, primarily via the internet. Use of e-mail, the
web, mobile phones, e-banking etc has become part of
everyday life, and e-business is an extremely rapidly
growing industry. The Java execution environment has
been most prominent in the software part of this new
technology, with its write-once-run-anywhere capability
inherent in its bytecodes and in the JVM, and with its
abundant highly practical and portable APIs. But many
of today’s Java applications do not have demanding size
and performance constraints.

So what will the next decade bring us? The next
revolution could well be in communicating embedded
devices. Some have predicted a trillion communicating
devices by 2025, affecting almost all aspects of our daily
lives. In at least some of these cases, an embedded
device application environment will have demanding
size and performance constraints, and will also require
high availability, high integrity and hard real time
deadlines. A growing number of these systems may
even have safety critical requirements.

The Real-Time Java initiatives presented in this paper
illustrate that the Java community as a whole, and its
tool vendors and those who promote international
standards in particular, are taking real-time requirements
and embedded system constraints very seriously, and are
preparing Java, its JVMs and its APIs for the next
revolution. So what of Ada95, or its next revision
Ada0Y?

Ada enthusiasts can argue quite validly that Ada95
environments can already meet the stringent

requirements of embedded systems better than any other,
and that Ada’s suitability for use in high integrity and
safety critical is second to none. However it is clear that
Ada did not figure in the communications revolution of
the 90’s, and does not enter the new millennium with an
expanding community. So can Ada, with all its excellent
reputation within high integrity and safety critical
embedded systems, find a role in the new revolution as
the battleground moves into Ada’s own strongholds?

The key to Ada’s successful future almost certainly
lies in seamless co-operation with the Java environment,
rather than in competing with it. It is interesting to see
how the two language environments are starting to
converge somewhat. This cross-fertilization could be
known as the “Jada effect”.

We have already seen in this paper that many of the
new ideas for Real-Time Java have been borrowed from
Ada, such as those needed for predictability and
deterministic schedulability analysis. Baseline Java had
already used Ada’s exception model, and now we see
that the real-time extensions have equivalents for
protected objects including entries, priority ceiling
emulation, well-defined thread scheduling policies,
absolute delay, high precision timers, suspension objects,
dynamic priority change, interrupt handlers,
asynchronous transfer of control, access to physical
memory, abort-deferred regions etc. So Java is
definitely evolving towards Ada in the real-time domain.

In similar fashion, Ada is evolving towards Java. The
Ada95 revision already brought in support for a
comprehensive object oriented programming model not
dissimilar to that in Java, including single inheritance
hierarchies, constructors and finalizers etc. The next
revision of Ada (Ada0Y) may well see the addition of
support for Java-style interfaces, thereby providing the
same limited form of multiple inheritance as in Java
(from one class plus any number of interfaces).
Furthermore, Ada0Y may relax the rules that currently
prevent mutually-dependent package specifications, via a
new with type construct. This would allow mutually-
dependent Java classes to be modeled as Ada packages
that each define a tagged type plus its primitive
operations, without having kludges to workaround
circularities in the “with” dependencies. Finally there is
even some discussion about whether to allow a Java-like
OOP syntax for invoking the primitive operations of a
tagged type. This could be used instead of the traditional
procedure calling style that requires some rules to
identify which parameter is the object that controls the
dynamic dispatching, replacing it with an OOP style
along the lines of object'Operation(parameters).

So it seems that both Java and Ada are undergoing the
Jada effect. However as well as language convergence,
it is also very important to have execution environment
convergence if the two are going to co-exist happily.

We have already seen some worthy attempts at
integration between Java and Ada execution
environments. A few different approaches are
mentioned below:
• Aonix’s AdaJNI [Flint00] makes use of the Java
Native Interface that is provided with the Java
Development Kit. This approach allows Ada native
programs to interact with Java classes and APIs that are
executed by a local or remote JVM via Ada-style
interface packages.
• Ada Core Technologies JGNAT [ACT00] compiles
Ada95 into Java bytecodes in standard class files. This
approach allows JVM-based programs to comprise a
mixture of Ada and Java code. Again, there is also the
capability for the Ada code to access Java classes and
APIs via Ada-style interface packages.
• Ada ORB vendors e.g. [OIS] provide access to
CORBA objects from Ada programs. This approach
allows a logically distributed, mixed-language (including
Ada and Java) system to communicate using the
CORBA client/server model.

If Ada is to gain any kind of foothold in the new
generation of communicating devices, we must build on
foundations such as these. The efforts of users and
vendors alike within the Ada community need to be
focused on developing and evolving Ada in ways that
are compatible with the emerging requirements, not least
a seamless co-existence with the new Real-Time Java
execution environments, their JVMs and their APIs. If
we can achieve this goal, this can give a whole new lease
of life to Lady Ada. We may even want to rename her
Lady Jada .

6 References
[ACT00] Ada Core Technologies, Inc; JGNAT User’s

Guide; 2000.
[Ada95] Ada95 Reference Manual, International

Standard ANSI/ISO/IEC-8652:1995, Jan 1995.
[Bollella00] Bollella G., Gosling J., Brosgol B., Dibble

P., Furr S., Hardin D., and Turnbull M.; The Real-
Time Specification for Java; Addison-Wesley; 2000.

[Brosgol98] Brosgol B.; A Comparison of the
Concurrency and Real-Time Features of Ada and
Java; Proceedings of Ada U.K. Conference 1998;
Bristol, U.K.

[Dobbing98] Dobbing B. and Burns A., The Ravenscar
Tasking Profile for High Integrity Real_Time
Programs. In “Reliable Software Technologies –
Ada-Europe ’98”, Lecture Notes in Computer Science
1411, Springer Verlag (June 1998).

[Dobbing00] Dobbing B. and Nilsen K., Real-Time and
High Integrity Extensions to Java, Embedded

Systems Conference West 2000 Proceedings,
September 2000.

[Flint00] Flint S. and Dobbing B., Using Java APIs
with Native Ada Compilers, In “Reliable Software
Technologies - Ada-Europe 2000”, Lecture Notes in
Computer Science 1845, Springer Verlag (June 2000).

[JCons00] International J Consortium Specification,
Real-Time Core Extensions, Draft 1.0.14, September
2nd 2000. Available at http://www.j-consortium.org.

[JLS00] Gosling J., Joy B., Steele G., and Bracha G.;
The Java Language Specification (second edition);
Addison-Wesley; 2000.

[Jones97] Jones R. and Lins R.; Garbage Collection;
Wiley and Sons; 1997.

[Nilsen96] Nilsen K.; Issues in the Design and
Implementation of Real-Time Java, July 1996.
Published June 1996 in “Java Developers Journal”,
republished in Q1 1998 “Real-Time Magazine”,
http://www.newmonics.com/pdf/RTJI.pdf.

[NIST99] Nilsen K., Carnahan L., and Ruark M., editors.
Requirements for Real-Time Extensions for the Java
Platform. Published by National Institute of Standards
and Technology. September 1999. Available at
http://www.nist.gov/rt-java.

[OIS] Objective Interface Systems, Inc, ORBexpress,
http://www.ois.com

	Introduction
	Challenges
	The NIST Requirements and the Two Real-Time Java Efforts

	Real-Time Core Specification
	Summary
	Concurrency and Synchronization
	Scheduling and Priorities
	Task Synchronization Primitives

	Memory Management
	Core Object Space
	Garbage Collection
	Core Object Allocation / Deallocation

	Asynchrony
	Asynchronous Events
	Asynchronous Transfer of Control

	Time
	Other Features
	Profiles

	RT Java Expert Group Specification
	Summary
	Concurrency and Synchronization
	Scheduling and Priorities
	Synchronization

	Memory Management
	Asynchrony
	Asynchronous Event Handling
	Asynchronous Transfer of Control

	Time and Timers
	Other Features

	Comparative Analysis
	The Two RT Java Specifications
	Comparison with Ada95
	Similarity to Ada Real-Time Annex
	Dissimilarity to Ada R-T Annex

	Looking Ahead
	References

