
Targeting Ada95/DSA for Distributed
Simulation of Multiprotocol Communication Networks

Dhavy Gantsou
University of Valenciennes

ISTV 2
59313 Valenciennes Cedex 09

France
E-mail : Dhavy.gantsou@univ-valenciennes.fr

Phone (+33) 327 511 944 , Fax (+33) 327 511 800

Abstract
The last years have seen an increasing, albeit
restricted simulation of large-scale networks on
shared memory parallel platforms. As the
complexity of communication protocols and the
network topology increase, so does the need for
high performance simulation techniques. An
impediment to the widespread use of these
simulations is the high coast of parallel platform.
To satisfy these requirements, network designers or
researchers have to use cost-effective networks of
commodity processors (workstations or Pc) as
computing environment. Towards this end, the
solution may be to transfert implementations of
parallel simulation techniques to distributed
architectures ; this leads inevitably to unreliable
and inefficient software. One reason, though
certainly not the only one, that such risk exists is
that real-time and distributed issues inherent to
networks have not been incorporated into model
describing actual network and its components. This
paper is concerned with the use of Ada95/DSA as
building block for abstracting network
architectures and protocols into distributed
simulation models. Besides the fact that we use
DSA features to naturally expresses the distributed
characteristics of networks architectures and
protocols, we show that generated models can be
efficiently executed on distributed environments,
while consistency is preserved by strong typing
proprties of Ada.

1 Introduction
 Conceptualy a communication network like
Internet is a collection of interconnected

autonomous systems (AS), each of them being a
group of network elements - routers, switches, hosts
and transmission media - under a single
administration. These elements share information
and policies, in order to provide users expected
quality of service (QoS). Achieving this goal is
becoming extremely difficult with the emergence of
new paradigms, new users and new applications.
Many of these new paradigms and applications
require network services which are not ideally
matched by those provided by traditional protocols.
To aim this target, it is necessary either to design
and implement new protocols, or to extend existing
ones. Designing, implementing, and deploying new
protocols generally require to modify millions of
end systems. This can lead to problems such as
routing protocols scalability and stability and
packet loss which in turn requires to understand and
to predict network behaviours. Parallel simulation –
performed on shared memory machines – is the
suitable tool for this end.
 Implementations of parallel simulators are not
commonplace. DaSSF[1] and JSSF [1] are the few
examples. It is widely acknowledged that
distributed simulation can provide same
performances as parallel simulation. As coast-
effective distributed computing platforms are
widely available, the tentation to porting software
intended for simulation on parallel architectures to
distributed environments is intense.
 However, as efficient as parallel simulators are,
they do not execute efficiently on distributed shared
memory architectures due to fundamental problems
of distributed computing. In a distributed system
architectures, interconnected processors do not
share a common physical address space,

consequently shared data cannot be accessed
through simple load and store instructions. On the
other hand, the time needed to access data depends
on their location. Accessing data on remote node
(remote data) needs more time than accessing local
data. Moreover, in a distributed environment,
synchronization may be undertaken under more
severe conditions [2] than in parallel computing .
Other problems arise from the nature of simulation.
 Distributed simulation can be defined as the
process of using networked workstations or PC
simultaneously for executing a single simulation,
with the goal of reducing the total execution time.
There are two major questions that network
simulator designers have to answer :
 • how to abstract network components into
simulation models, and,
 • how to express the model for providing
distributed execution?
This paper describes our Ada95/DSA-based
approach for answering these questions.

2 Modeling approach
 Network applications are inherently distributed.
They must operate under more-severe constraints
than ‘’normal’’ software systems and yet perform
reliably for long periods of time. Some of these
constraints are schedulability, predictability,
robustness, and deadlines. As such network
applications are considered as real-time systems.
We can achieve our goal through a modeling
language which permits to abstract the structural
and behavioural aspects of network architectures.
Real-time unified modeling language (UML) [5],
[6] is an example of such language that we will
use. Assuming all functional objects have been
identified, the focus must be on following aspects :
 • naturally expressing the model. Since targeting
distributed simulation, this implies to use
abstraction permiting both:
 1 – to decompose the system – into
components (active or not) - and control its
complexity ;
 2 - a realistic description of the behaviour of
active components.
This concerns two aspects : first one, the
simultaneous execution of active components given
the fact that they are to be distributed across
interconnected processors on wich they have to be
executed (distributed execution). The second is the
fact that an active component may include
subcomponents being executed concurrently.
 • specifying all interactions between
components, implicit or explicit.
 • ensuring that components are consistent with
each other. Each component of the model receives
input from other interacting components, and

provides them outputs; Mode and type of sender’s
parameters must match those of the receiver.
 • providing for efficient execution of expressed
models; this depends on how issues such as access
to shared ressources, synchronization,
communication and coordination of executions are
addressed inside and between active components.

2-1 Identifying objects
 A communication network includes functional
objects (physical and logical) wich interact to
realize both networking functions and application
processing. Networking applications are separated
in layers, each of them serving specific function.
Each layer uses its own layer protocol to
communicate with its peer layer in the other
system. Each layer’s protocol exchanges
information, called protocol data units(PDU),
between peer layers. A given layer uses a more
specific name for its PDU.
 The tasks performed by a protocol fall into two
categories : those dealing with information flow
and and those having to maintain protocal-related
state information. The protocol is responsible for
moving data to and from end user (eg host,
intermediary system or end user program), and for
information flow and protocol state. It also adds
header to outgoing data, and removes and
interpretes header from incoming data . For
example in the five-layer TCP/IP protocol stack[7],
the transport layer communicates with the peer
transport layer using segments.
 The peer-layer protocol communication is
achieved by using the services of the layer below it.
The layer below any current layer provides its
services to the current layer. Each lower-layer
service takes upper-layer information as part of the
lower-layer PDU it exchanges with its layer peer.
Thus, the TCP segment becomes part of the
network-layer packet (also called datagram)
exchanged between IP peers. In turn, the IP packets
must become part of the data-link PDU - frames-
exchanged between directly connected devices.
Ultimately these frames must become bits as the
data is finally transmitted by physical-layer
protocol using hardware.
 A protocol maintains two kinds of state
information : information specific to a particular
session and global information. Session specific
state includes current sequence numbers, data sent
by a peer entity but not yet acknwoledged etc.
Examples of global information include router
identification - used to identify an router to the
open shortest path first (OSPF) [8] - , topology data
base, link-state information etc.
 One of the aspects inherent to state maintenance
is the necessity for :

 • controling access to global information when a
protocol involves active components executing
simultaneously.
 • coordinating execution of distributed active.
These requirements happen for example, when
OSPF routers on a given network interact with the
designated router (DR) [8] acting as central point of
contact for link-state information exchange.
Beyonds the need to manage the link-state
synchronization, this situation requires
coordinating the execution of routers.
 Another aspect of state maintenance is to keep
track of time (through timer) and to ensure that
events happen in timely manner. This is the case
with the hello and dead intervals in establishing
adjacencies in OSPF protocol. The hello interval
specifies the frequency, in seconds, that a router
sends hellos. The dead interval is the time in
seconds that a router waits to hear from a neighbor
before declaring the neighbour router. This timers
must be the same on neighboring routers.
Timeliness is essential to correctness of such a
protocol.

2–2 Model Abstraction
2-2-1 DSA features at glance [9]
 DSA is part of the Ada95 ISO standard[4]. It
aims at providing a framework for programming
distributed systems within the Ada language, while
preserving strong typing properties.
 The distributed application model of DSA is
more general. It provides RPC and remote
execution of methods (facility and references to
remote operations (subprograms). It also allows the
definition of a shared data space, through the
abstraction of the shared passive package. DSA
provides the Remote Call Interface (RCI)
categorization pragma that makes operations
(procedures and functions) of a package available
for remote procedure calls. Remote Types (RT)
package can define distributed objects and methods
whose invocation may be synchronous or
asynchronous. RT units allow non-remote access
type, provided there are marshalling subprograms.
DSA enables global data to be shared between
active partitions, even they are declared in a
Shared_Passive library unit.
 For security and Qos purpose, DSA provides
channel. A channel is connection between two
communicating partitions. Having defined a
channel, a designer may apply compression, and
encryption of data exchanged through the channel.
 DSA provides an integrated approach for
application development and test : going from a non
distributed application, which is easy to test and to
debug, to a full distributed only requires the
addition of one categorization pragma to each

package that defines remote objects or
subprograms.

2-2-2 Objects abstractions using Ada95/DSA
 To abstract active components , while ensuring
their distributed execution, we use DSA
Remote_Call_Interface, Remote_Types and
Shared_Passive categorized partition as building
block. Each of these partitions communicates with
its surrounding environment. Communication may
be supplied by :
 • RPC for RCI partitions.
 • Remote objects invocation for RT partitions.
RPC and remote objects invocations may be
synchrone or asynchrone. Communication involves
transmission of event, modeled by parameters of
mode :
 • in, out, in out when exchanging data of
elementary type.
 • access when exchanging data of class-wide or
complexe type.
To illustrate, the example below is a snippet of a
model of a router.

 with Common, Interface;
 package Router is
 ………………………..
 type Current_Data is new Interface.Root_Class with
 record
 ……………..
 end record;
 procedure Update(Source : access Current_Data ;
 Update : Interface.Exchanged_Attributes);
 ……………………….
 end Router ;

The operation Update models an interaction of a
router with others. Inputs and outputs are naturally
expressed using Ada95/DSA features. This is one
of the salient differences to modeling approaches of
TeD-based abstraction model[3]. TeD is an object-
oriented language for modeling telecommunication
networks. Simulation framaworks using TeD
model(eg DaSSF and JavaSSF) do not provide
direct expression of real-world aspects such as
inputs and/or outputs, simultaneous execution of
active objects etc. To overcome these issue these
frameworks provide an interface defining classes
enabling a more realistic abstraction. The example
below shows the interface enabling to abstract input
in java and in C++.

 public interface inChannel {
 public Entity owner();
 public Event[] activeEvents();
 public outChannel[] mappedto();
 }
public interface for modeling input in Java [1]

 class inChannel {
 public:
 Entity* owner();
 Event** activeEvents(); // null-terminated
 outChannel** mappedto(); // null-terminated
 };

 public interface for modeling input C++ [1]

Besides operations expressing interactions with the
surrounding environment, an active object may
include threads modeling concurrent execution of
arriving events or for expressing event-driven or
arrival-driven behavior. This goal is achieved
through the combined use of the Ada.Real_Time
annex features, tasking timie and timing related
statements such delay t, delay until t, and the
asynchronous transfer of control.
Another issue to address in our approach is to
model the sharing of resources. Sharing resources
occurs at two levels of interactions :
 • among objects executing on interconnected
processors (eg distributed objects).
 • among objects executing simultaneously on a
processor (eg concurrent objects),
Enabling distributed objects to efficiently access
common entities is a fundamental decision that has
great impact on the performance requirements of
the system. The simplest, albeit robust way to
overcome all issues inherent to this aspect is to
provide a high level abstraction based on the
Shared_Passive partition which is an DSA mean to
provide a virtual shared address space. The code
below shows an example

 with Annex_Data ;
 use Annex_Data ;
 package Shared_Entities is
 pragma shared_passive;
 ……………………
 type Class_Root is abstract tagged limited private;
 type List_Template is array(Key_Typ range <>) of
 Link_State_Info;

 type List_Template_Ref is access all List_Template ;
 function Retrieve (Link_State_Data : access Class_Root ;
 My_ID :Msg_Typ) return Link_State_Info is abstract;
 procedure Deposit(Target : access Class_Root ;
 Source : List_Template) is abstract;
 ……………………………
 private
 type Class_Root is abstract tagged limited null record;
 end Shared_Entities;

This abstraction can then be inherited by each
distributed object having to access shared entities as
shown below

 with Shared_Entities, Annex_Data ;
 use Shared_Entities, Annex_Data ;
 package Object_Modeled_Router is
 pragma Remote_Types;
 type Current_List_Obj is new The_Class_Root with

 record
 Tab: List_Template_Ref;
 end record;
 ………………………
 function Retreive(Link_State_Data : access Current_List_Obj ;
 My_ID : Msg_Typ) return Link_State_Info ;
 procedure Deposit(Target : access Current_List_Obj ;
 Source : List_Template) ;
 …………………………….
 end Object_Modeled_Router;

Controling access to data inside an active object
does not require an abstraction. Either for
distributed interactions or for concurrent
interactions, it is handled at the implementation
level. In both case the simplest, albeit robust way to
achieve this goal is to use a protected type. A
protected type is an Ada95 concept which enables
the implementation of synchronization mechanism
that scales smoothly from a single processor to a
multiprocessor. For distributed objects, shared
resources must be part of a partition
Shared_Passive partition which is an DSA mean to
provide a virtual shared address space. Controlling
access consists in implementing an entryless
protected object in the shared_passive partition.

3- Related works
 DaSSF and JSSF are large-scale network
modeling software. They are based on the TeD [3]
approach making the description independent of
simulation. Thus, the execution of expressed
models is only possible through translation.
Although they can run on distributed architectures,
models from which they are constructed are
targeted for simulation on parallel architectures.
Their description does not naturally express the
distributed environment, moreover fundamental
issues inherent to distributed execution such as
synchronization are not integrated in the model.
The TeD model only supports transmitting events
modeled by elementary types, certainly due to the
semantics of the C++ used for its implementation.

4- Conclusion
 No programming language provides direct
support for abstracting and executing models of
network applications, Ada95 does. However, it
provides a distributed object-oriented middleware
and a rich set of fundamental building blocks which
allows to design, test, end efficiently execute the
generated distributed network models.
 Implementing network simulation software raises
a wide range of issues. Some results of our
investigations have been already used for
implementing distributed models simulating parts
of DHCP, OSPF and BGP4 protocols. Although
Glade-3.13p [9] (the implementation of DSA) does
not provide all features yet, we ran our models
successfully on a solaris 2.7 running SunEnterprise

5000, as well as on a 100M ethernet network of 15
SunUltraSPARC running solaris 2.6.
 Using Glade to implement network applications
is a great challenge that can help promoting Ada in
this area and in education. The Ada community and
particulary Glade practitioners can play a decisive
role in the development of network software, and
particulary in distributed network simulation
techniques. Contrary to C++ and Java which are
commonly use, not for their efficiency ,
Ada95 /DSA has a rich set of built-in features
which permit to tackle a wide range of issues
surrounding the developpment of network
applications.

References
[1] http ://www.ssfnet.org
[2] Albert Y. H. Zomaya , ‘’ Parallel & distributed
computing handbook’’, McGraw-Hill Series on
Computer Engineering, 1996
 [3] Kalyan Perumalla, Richard Fujimoto, Andrew
Ogielski ‘’ MetaTeD : A Meta Language for
Modeling Telecommunication Networks ‘’ GIT-
CC-96-32, Technical Report, College of
Computing, Georgia Institute of Technology, 1997
 [4] ISO Information Technology – Programming
Language- Ada ISO /IEC/ANSI 8652 :1995
[5] Grady Booch, James Rumbaugh, Ivar Jacobson
‘’The Unified Modeling Language’’
 Addison-Wesley ISBN 0-201-57168-4
[6] B. Powel Douglass ‘’Doing Hard Time :
Developing Real-Time Systems With UML,
Objects, Frameworks, and Patterns’’, Addison
Wesley Longman, Inc, 1999
[7] TCP/IP W. Richard Stevens ‘’TCP/IP
Illustred’’, Volume 1
Addison-Wesley 1994
 [8] OSPF2 RFC 2328
[9] Samuel Tardieu, Laurent Pautet ‘’Glade User
Guide’’ ftp://ftp.cs.nyu.edu

