
Using Ada 95 in a Compiler Course

Tucker Taft

The Compiler Construction course is often one of the most challenging elements of a Computer
Science curriculum. Expecting a student to build a complete, functioning compiler in a single
semester is asking a lot, and is often more than can be accomplished. Given the positive
experience associated with using Ada for other challenging computer science courses [refs
TBD], it seemed interesting to try to develop a Compiler Construction course based on Ada. The
first task is to actually build a compiler in Ada, and then choose how to break it apart into pieces
that either the student needs to build or the professor will provide in advance.

This spring, when beginning to teach my third Compiler course in the past few years, I decided
to try to "follow along" with the assignments I gave to the students, who were generally
building their compilers in C, C++, Java, or ML, but build my compiler in Ada. It has certainly
kept me busy, but the compiler is now nearing completion, and it has been an interesting
experience. This paper will explore the process of building a compiler in Ada 95 oriented
toward teaching Compiler Construction, and provide some specifics on which parts might make
sense for students to write, and which parts the professor might provide. It is my intent to make
this compiler freely available for others interested in the teaching using Ada 95.

The recently published series of three books [ref] by Andrew W. Appel have provided the
structure for the compiler courses I have taught. The books are essentially identical to one
another, except that the programming examples are either in C, ML, or Java. The titles are
"Modern Compiler Implementation in {C, Java, ML}." Appel provides some pieces in these
three languages for students to use. However, I found various aspects of Appel's compiler design
less than satisfactory, and in particular, he makes little or no use of object orientation, even
though Java is one of the languages supported. Clearly when building a compiler in Ada 95, it
would be a shame not to take advantage of the tagged type capabilities.

Compilers are loaded with places where Ada's type extension is a perfect fit to the data
representation problem. There are various kinds of tokens in the lexical analyzer (aka "lexer"),
there are various kinds of nodes in the abstract syntax tree (AST), there are various kinds of
constructs in the intermediate representation (IR), and various kinds of instructions in the
generated machine code. Each of these correspond to a place where a hierarchy of tagged types
is the natural choice for implementation. But making this most basic choice is just the
beginning of a myriad of decisions that need to be made in structuring a compiler that should be
robust and reasonably efficient yet still easy to understand and extend.

One set of critical decisions is determining where the language and target dependencies should
appear. Some compilers are designed to maximize the amount of code that is independent of the
language being compiled, and even more so independent of the target instruction set
architecture. The ultimate "dream" is the compiler-compiler, where the compiler structure and
algorithms are independent of the language and target, and a "simple" parameterization process
is all that is required to produce a compiler for any given language and target. Alas this has
largely remained just a "dream," despite many efforts in the past. As usual, the "devil is in the

details," and either efficiency or completeness have typically suffered to such an extent that
most compilers are still being built largely by hand. Probably the only truly successful compiler
building tool produced over the past 25 years is YACC and its derivatives. Even lexer
generators are often bypassed in favor of a hand-written lexer, given the surprising amount of
CPU time devoted to lexical analysis in a typical compiler, and parser generators like YACC
sometimes fall by the wayside when good syntactic error recovery is desired.

One very common approach is to split a compiler into two "ends," a front end which is
language-specific, but largely target independent, and a back end which is target-specific, but
largely language independent. The two ends communicate through an "intermediate
representation" (IR) which, ideally, is both language and target independent. Sometimes a
middle "end" is thrown in, either to translate from a high-level IR to a lower level IR, or to
perform IR-to-IR optimizations. This is basically the approach that Appel follows, the one that I
have encouraged for my students, and the one I have taken for my "own" Ada compiler project.

In the front end is the lexical analyzer (lexer), the syntactic analyzer (parser), static semantic
analyzer (semantics), and the IR generator (dynamic semantics insertion). An optional flow
analyzer "end" transforms the IR back to itself, hopefully smaller and/or more time efficient
(while still producing the right answer!). In the back end is the instruction selection phase, the
register allocator, optionally some amount of peep-hole or instruction-scheduling optimization,
and the final assembly-code generator.

In the "old" days, often more than half of a compiler construction course was spent on lexing
and parsing, but these days, there is much more time spent on semantics and back end phases.
This happens to correspond better to where time is spent on modern "industrial-strength"
compilers. In addition, the availability of tools like "lex" and "yacc" have made lexing and
parsing more an exercise in running a couple of tools than in designing data structures and
algorithms. On the other hand, one of the main challenges for students (or any compiler-writer)
in a compiler course is coming up with the "right" data structures and abstractions that will
allow them to create the various phases of the compiler and have them actually all work together
as a productive whole. It is here that the instruction and pre-defined interfaces provided by the
instructor come in most handy. The actual algorithms involved are relatively straightforward and
interesting for students to write, but if the underlying abstractions are wrong, the compiler
writing efforts can produce a chaotic morass of snarled code.

[The remainder of this paper will provide details on the various abstractions designed to support
the compiler, essentially in the form of one or more Ada package specs, and how they can be
used to help a student structure their compiler while still giving them plenty of opportunity for
learning about compilers and software engineering. We will compare our approach with the
approach used by various compiler textbooks, including Appel's, as well with various other
textbooks that attempt to lead a student through a complex software development project
without giving them the entire answer. We will attempt to indicate where the various features of
Ada support the educational process, and provide natural places to separate the pre-written code
provided by the instructor from the code to be written by the student.]

