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Introduction
One of the most difficult tasks facing any Software Engineer is that of updating an unfamiliar program. Despite
years of development of Software Engineering techniques, the job still somehow comes down to long hours of
paging through code in an editor or debugger.

Practicing Software Engineers tell us that reliably locating product features in unfamiliar programs can be one
of their biggest headaches. Our research in feature location was motivated several years ago by a visit to a site
that maintained the software of a telephone PBX switch. To make changes correctly, maintainers needed to find
all the code fragments involved in end-user features such as "call forwarding" or "call waiting". In a large and
frequently-modified system such as this one, the code for a feature is often not contiguous or located in obvious
places.

In response to this need, we developed a simple but elegant dynamic analysis method called Software
Reconnaissance to aid in locating such product features. The method has been tried out and refined with support
from the Software Engineering Research Center (SERC)2. Case studies at several sites indicate that the method
seems to be useful [WILD.96]. For C software, students at the University of West Florida have developed a
public-domain Reconnaissance tool called Recon2 [RECON] and Telcordia, a SERC affiliate, has included a
Reconnaissance facility in their χSUDS testing toolkit for C and C++ [TELCO].

Several SERC industrial affiliates also expressed an interest in applying Reconnaissance to Ada code, and
particularly to Ada embedded systems.  However such code has characteristics that can make dynamic analysis
difficult. This paper describes the progress of our current efforts to address the issues involved in extending
Software Reconnaissance to Ada and to develop a public-domain Ada Software Reconnaissance tool.

The Software Reconnaissance Method

Software Reconnaissance uses test cases as probes to locate code for a particular product feature. The program is
first instrumented in much the same way as programs are instrumented to determine test coverage. Then it is run
with a few test cases that exhibit the desired feature and with a few others that do not. The executions of the
instrumented code produces trace files showing which code components (usually branches or basic blocks) were
used in each test.

The Software Reconnaissance method is described formally in [WILD.95]. Any one of several different
heuristics described there may then be used to locate the components for a particular feature. The simplest, and
often the best, is simply to take the set of marker components for the feature, defined as those components that
are executed in at least one test case that exhibits the feature and not executed in any test case without the
feature (Figure 1).
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Figure 1
Locating "Marker" Components for a Feature

The techniques in the literature that most closely resemble Software Reconnaissance are methods for debugging.
A common witticism in Software Engineering is that a program fault may be viewed of as simply an undesired
"feature". In desperation, experienced debuggers sometimes resort to a technique called "dump and diff" that
involves inserting print statements and running a file difference utility to compare different runs. The first
published suggestion that trace information could be used systematically for fault localization seems to have
been by Collofello and Cousin [COLO.87] who suggested tracing "decision-to-decision paths" and comparing
runs that exhibit a failure with runs that do not.

Experience from C Trials of Software Reconnaissance
The Software Reconnaissance method of locating features has been tried in a series of case studies, most of
them involving C code. The first trials used University or public domain code, as a "sanity check" to see if the
method made sense. One of these trials was a protocol study in which experienced C programmers were asked
to "think aloud" as they used the method to solve a problem. Such trials are useful to evaluate the usability of a
technique by its prospective users [WILD.95].

Additional trials used small software systems (from about 10 KLOC to 50 KLOC, raw line counts) from SERC
affiliates and other companies [WILD.96]. In these trials a Software Engineer familiar with the system was
asked to locate features that he had recently needed to study, or that could be important for a new maintainer.
These trials gave us increased confidence in the value of the method, as well as insight into the kinds of test
cases that are most effective.

The results of these trials have generally been favorable. Software Reconnaissance does not locate all the code a
maintainer needs to study to understand a feature, but it usually finds very good starting points for code
exploration in an unfamiliar system. It focuses attention on a relatively small part of the code and can often
provide insights that surprise programmers, even if they thought they already understood the program. "I didn't
know it was doing that!" is a comment we have heard several times in our studies.

Software Reconnaissance for Ada

These experience with C would seem to show that an Ada Software Reconnaissance tool would be desirable.
However Ada systems have characteristics that make the production of traces somewhat problematic:

•  Ada systems are often embedded, which makes it more difficult to produce and store trace files.
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•  Ada systems often use multi-tasking, so naive methods of tracing, such as direct writes to the file
system, may fail due to task contention.

•  Ada systems often have real-time constraints, which may limit the amount of tracing which can be
performed.

An Ada tool for Software Reconnaissance will thus require careful design. Our approach to developing such a
tool has included a survey to identify current instrumentation practices for embedded systems, design of an
architecture to accommodate multi-tasking as well as the results from the survey, and timing trials to estimate
the performance impact of instrumentation.

Instrumentation Practices for Embedded Systems
There is a considerable literature on the problems of tracing or monitoring embedded, real-time and distributed
systems. An extensive survey of the debugging problems is given by McDowell and Helmbold [MCDO.89].
Schutz also gives an extensive review of the problems, emphasizes the problem of observability, and comments
on the difficulties of using conventional debuggers [SCHU.94]. He also describes several monitoring systems.

Many other authors also discuss the theory of monitoring methods and/or describe specific monitoring or
debugging systems, for example  [MARI.90, TSAI.90, SCHM.94, SIDE.94]. Yan, Sarukkai and Mehra describe
some experience with a very extensive set of monitoring and visualization tools from NASA's Ames Research
Center [YAN.95]. Hollingsworth, Miller, Goncalves, Naim, Xu and Zheng describe a technique they call
"dynamic program instrumentation" in which the running program is modified periodically to  collect
information about its execution [HOLL.97]. Waheed, Rover and Hollingsworth give a detailed analysis of some
of the design alternatives in monitoring distributed systems, such as the trade-off between sending event data
immediately or batching it for efficiency [WAHE.98]. Heath and Etheridge describe methods for graphically
displaying the results of monitoring parallel systems, a topic that is very important for effective program
comprehension [HEAT.91].

Our group took a different tack and surveyed practicing Software Engineers, mostly from SERC affiliate
companies, to see what instrumentation methods were actually being used. The survey covered 10 embedded
systems ranging from 2 KLOC to 3 MLOC in size, and from mid 70's to late 90's in development epoch. Only
two of the systems were written in Ada, but they were all embedded and had real-time constraints. A more
complete report of the survey is given in [WILD.99].

In general, we found that instrumentation was often ad-hoc, and was only added after severe problems were
encountered in integration or testing. Few engineers were aware of or had available to them instrumentation
systems of the sophistication described in the studies mentioned previously.

The survey clearly showed that extracting trace data from an embedded system is difficult; there can be no
general solution because the hardware differs so greatly from system to system. Software engineers exercised
great ingenuity to extract trace information. Methods described to us used everything from light emitting diodes
to logic analyzers to conventional flat files depending on the available output devices.

We also found that our interviewees wanted to go considerably beyond the needs of Software Reconnaissance.
Reconnaissance only requires a trace that shows if a particular component (e.g. subprogram or basic block) was
executed or not. However for understanding embedded systems it is often essential to know the number of times
the component was executed, the actual sequence of execution, or possibly even the time at which execution
occurred.
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Based on these interviews, we defined three primary circumstances in which a Software Engineer could make
use of Ada Software Reconnaissance:

•  Testing in a development environment where timing constraints are not stringent. Reconnaissance could
help acquire an understanding of the features of a legacy software system.

•  Testing using a monitor connected to the actual target system. Traces would be sent to the monitor by a
variety of methods (socket, communications port, logic analyzer, etc.) depending on the target system
hardware available. Reconnaissance could be used to analyze and evaluate run-time behavior of the
target system.

•  Remote monitoring of a deployed system for troubleshooting purposes, making use of instrumentation
previously installed. Reconnaissance could be used to highlight changes in behavior as the system
executes [LUKO.00].

There are thus three decisions to be made for each tracing session:
•  What events are instrumented (e. g. subprogram entries/returns, basic block executions, task activation

and rendezvous?)

•  What information is captured at each event (e.g. just whether the event occurred, a count of occurrences,
the sequences of occurrences, or the times of occurrences)

•  How trace monitoring is performed (e. g. via a socket, a logic analyzer, a communications port, etc.)

The Ada Tracing Architecture
It is clear that no one solution will meet all these needs. Instead, we have defined a set of interchangeable
components that can be used to instrument an Ada program. The general architecture is shown in Figure 2.

The instrumented program actually contains the trace_manager_interface task embedded in the
declarative part of the main program unit. Trace data is stored within the trace_array_pkg which is made
visible using a with context clause. Additional instrumentation which calls the trace_it procedure is used
to record each trace event in the trace_array, which is declared using the Atomic_Components pragma
to prevent contention.

The trace_manager_interface task runs concurrently with the users program units. At the trace_now
entry call, copy_traces copies the trace_array to tmi_array during the rendezvous, after which
send_traces and the users tasks continue concurrently.

The send_traces procedure would have to be written specially for each environment, since the mechanism
for trace monitoring is hardware-dependent. The trace manager may be as simple as a program to write trace
data to a file, or it could interface to a more sophisticated analysis or display tool.
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Figure 2
General Architecture for Ada Tracing

erformance Trials for Ada Tracing

ll methods of producing traces may be to some extent intrusive, that is, they may change the behavior of the
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The problems with basing decisions on any kind of time benchmarking are well known. For example [CLAP.86]
describes the difficulties in developing a set of benchmarks for different features of Ada. The programs and the
environment used for the benchmark may not be representative of your system so "your mileage may vary".

(The full paper will contain a more detailed description of the performance trials and their results)

Conclusions
We have described the Software Reconnaissance method for locating product features in software systems as
well as our experience so far with this method as applied to C programs. We believe that Reconnaissance can
also be very useful to developers and maintainers of Ada systems.

To create an Ada Reconnaissance tool we have surveyed practicing Software Engineers to see how they use
instrumentation with embedded software today. Based on these results, and on our earlier experience with C, we
have attempted to define an Ada tracing architecture that will be flexible enough to be usable in the kinds of
situations that arise in practice.

We think we are well on the way to providing a public domain Ada Reconnaissance tool that will be made
available to the Ada community.
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