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TFor example, Fig. 12 shows the tree which results when the most common
31 words of English are entered in decreasing order of frequency. The relative
frequency is shown with each word [ef. Cryptanalysis by H. F. Gaines (New
York: Dover, 1956), p. 226]. The average number of comparisons for a suceessful
search in this tree is 4.042; the corresponding binary search, using Algorithm
6.2.1B or C, would require 4.393 comparisons.

Optimum binary search trees. These considerations make it natural to ask
about the best possible tree for searching a table of keys with given frequencies.
For example, the optimum tree for the 31 most common English words is shown
in Fig. 13; it requires only 3.437 comparisons for an average successful search.
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Fig. 13. Optimum search tree for the 31 most common English words.

Let us now explore the problem of finding the optimum tree. When N = 3,
for example, let us assume that the keys K, < K, < K3 have respective prob-
abilities p, ¢, r. There are five possible trees:

I IV

Cost: 3p + 2 +r 2p+ 3¢+ 7 2p 4+ g + 2r P+ 3q+ 2r p+ 2¢ + 3r

Figure 14 shows the ranges of p, g, » for which each tree is optimum; the balanced \
tree is best about 45 percent of the time, if we choose p, ¢, r at random (see
exercise 21).

—



434 SEARCHING 6.2.2
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Fig. 14. If the relative frequencies of (K1, K2, K3) are (p, ¢, r), this graph shows
which of the five trees in (13) is best. The fact that p+ ¢--r = 1 makes the graph
two-dimensional although there are three coordinates.

Unfortunately, when N is large there are

(gg) [ 041 ~ /TN

binary trees, so we can’t just try them all and see which is best. Let us therefore
study the properties of optimum binary search trees more closely, in order to
discover a better way to find them.

So far we have considered only the probabilities for a successful search; in
practice, the unsuceessful case must usually be considered as well. For example,
the 31 words in Fig. 13 account for only about 36 percent of typical English
text; the other 64 percent will certainly influence the structure of the optimum
search tree.

Therefore let us set the problem up in the following way: We are given
2n + 1 probabilities py, pa, .. ., pn and qo, 1, - - . , ¢n, Where

p; = probability that K, is the search argument;
g: = probability that the search argument lies between K; and K;4,.

(By convention, g is the probability that the search argument is less than K,
and g, is the probability that the search argument is greater than K,.) Thus,
prLtpet Pt aq+aqg -+ + ¢ =1 and we want to find a binary
tree which minimizes the expected number of comparisons in the search, namely

3 piQlevel@) + 1) + 2 awlevel([kD), (14)

1<j<n 0<k<n
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“‘hﬁ‘.l"t}@iﬂ the jth internal node in symmetric order and [k]is the (k -+ 1)st ex-

ternal node, and where the root has level zero. Thus the expected number of
comparisons for the binary tree

(15)

is 2¢0 + 2p1 + 3¢1 + 3p2 + 3q2 + ps + ga. Let us call this the cost of the tree;
and let us say that a minimum-cost tree is optimum. In this definition there is
no need to require that the p’s and ¢’s sum to unity, we can ask for a minimum-
cost tree with any given sequence of “weights” (py, ..., Pn; Qo - -+, n)-

We have studied Huffman’s procedure for constructing trees with minimum '}
weighted path length, in Section 2.3.4.5; but that method requires all the p’s.
to be zero, and the tree it produces wil 4 have t terna
weights (gq, . . ., gn) in the proper symmetric order from left to right. There-
fore we need another approach.

The principle which saves us is that all subtrees of an optimum tree are opti-
mum. For example if (15) is an optimum tree for the weights (py, ps, Ps;
o, 41, ¢2, q3), then the left subtree of the root must be optimum for (py, p2;
o, q1, ¢2); any improvement to a subtree leads to an improvement in the whole
tree.

This principle suggests a computation procedure which systematically finds
larger and larger optimum subtrees. We have used much the same idea in
Section 5.4.9 to construct optimum merge patterns; the general approach is
known as “dynamic programming,” and we shall consider it further in Chapter 7.

Let ¢(7, ) be the cost of an optimum subtree with weights (piy1, ..., Pis
Gy - - - @;); and let w(G,j) = piq1 -+ -+ pj+ g+ -+ -+ g; be the sum of
all those weights; ¢(z,j) and w(%, j) are defined for 0 < 7 < j < n. It follows
that

o LT

(i, 7)) = 0, B N et
e(z, 1) = wiz, j) + 121;311 (c(fi, E— 1)+ ek, M), for 5., (16)
i<h<j

since the minimum possible cost of a tree with root @ isw(t, ) 4+ e(@, kb — 1)+
e(k, 7). When 7 < j, let R(i,j) be the set of all & for which the minimum is
achieved in (16); this set specifies the possible roots of the optimum trees.
Equation (16) makes it possible to evaluate c(¢, j) forj — ¢ = 1,2,3,...,1;
there are about 4n? such values, and the minimization operation is carried out
for about in® values of k. This means we can determine an optimum tree in
O(n?®) units of time, using O(n?) cells of memory. s —

" —
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A factor of n can actually be removed from the running time if we make
use of a “monotonicity” property. Let r(,j) denote an element of R(z,j); we
need not compute the entire set (¢, j), a single representative is sufficient. Once
we have found (7, j — 1) and r(i + 1, j), the result of exercise 27 proves that
we may always assume that

r(@,j — 1) < r@j) < r@+1,7) an

when the weights are nonnegative. This limits the search for the minimum,
since only 7(¢ + 1, 7) — r(¢,5 — 1) = 1 values of k need to be examined in (16)
instead of j — 7. The total amount of work when j — ¢ = d is now bounded by
the telescoping series

> (G+1,5) —rGi—1)+1)
d<ji<n

imj—d =rn—d+1,n —r0,d—1)+n—d-+1<2n,

hence the total running time is reduced to O(n?).
The following algorithm describes this procedure in detail.

Algorithm K (Find optimum binary search trees). Given 2n + 1 nonnegative
weights (p1, . - -, Pn; oy - - - » gn), this algorithm constructs binary trees i(, j)
which have minimum cost for the weights (piy1, . . ., Pj; ¢i, - . -, ¢;) in the sense
defined above. Three arrays are computed, namely

elt, 7l, for 0€155<H, the cost of (¢, J);
[z, 7], for 0<i<j<n, the root of i(z, j);
wli, 71, for } = {95 m, the total weight of i(z, 7).

The results of the algorithm are specified by the r array: If ¢ = j, (¢, j) is null;
else its left subtree is t(7, r[¢, /] — 1) and its right subtree is ¢(r[Z, 71, J).
_“-—\___-’___\ i,

K1. [Initialize.] For 0 < ¢ < n, set ¢[¢, ¢] < 0 and w[z, 7] « ¢; and wli, j] <
wg,j —1l+pj+gq for j=¢+1,...,n Then for 1 <j<n set
elj — 1,7l —wlj —1,4] and r[j — 1,j]«j. (This determines all the
1-node optimum trees.)

K2. [Loop on d.] Do step K3 ford = 2,3, ..., n, then terminate the algorithm.

K3. [Loop on 7.] (We have already determined the optimum trees of less than
d nodes. This step determines all the d-node optimum trees.) Do step K4
forg=d,d4+1, ...,

K4, [Find c[7, 5], rl7, j].] Set ¢« j — d. Then set

c[z, 7] <= wlz, 7] + min i j_11 <k < rtsg1,5 (€[5, & — 1] + e[k, 71),

and set r[¢, ] to a value of k for which the minimum occurs. (Exercise 22
proves that r[¢,7 — 1] < r[{ -+ 1,7].) 1
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As an example of Algorithm K, consider Fig. 15, which is based on a “key-
word-in-context” (KWIC) indexing application. The titles of all articles in the
first ten volumes of the ACM Journal were sorted to prepare a concordance in
which there is one line for every word of every title. However, certain words
like “THE” and “EQUATION” were felt to be sufficiently uninformative that they
were left out of the index. These special words and their frequency of occurrence
are shown in the internal nodes of Fig. 15. Note that a title such as “On_the
solution of an equation for a cerfain new pro ” would be so uninformative,
It wouldirt appear in the index at alll The idea of KWIC indexing is due to
IT. P. Luhn, Amer. Documentation 11 (1960), 288-295. (See W. W. Youden,
JACM 10 (1963), 583-646, where the full KWIC index appears.)

aF () 266

COMPUTATIONS( )

EQUATION()

Fig. 15. An optimum binary search tree for a KWIC indexing application.

When preparing a KWIC index file for sorting, we might want to use a
binary search tree in order to test whether or not each particular word is to be
indexed. The other words fall between two of the unindexed words, with the
frequencies shown in the external nodes of Fig. 15; thus, exactly 277 words
which are alphabetically between “PROBLEMS” and “SOLUTION” appeared in the
JACM titles during 1954-1963.

Figure 15 shows the optimum tree obtained by Algorithm K, with n = 35.
The computed values of 7[0, j] forj = 1,2,...,35are (1,1, 2,3, 3,3, 3,8, 8, 8,
8,8 8 11,11, ..., 11, 21, 21, 21, 21, 21, 21); the values of r[i, 35] for ¢ = 0,
1, ..., 34are (21, 21, ..., 21, 25, 25, 25, 25, 25, 25, 26, 26, 26, 30, 30, 30, 30,
30, 30, 30, 33, 33, 33, 35, 35).

The “betweenness frequencies” q; have a noticeable effect on the optimum
tree structure; Fig. 16(a) shows the optimum tree that would have been ob-
tained with the ¢; set to zero. Similarly, the internal frequencies p; are impor-
tant: Fig. 16(b) shows the optimum tre¢ when the p; are set to zero. Considering
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Fig. 16. Optimum binary search trees based on half of the data of Fig. 15; (a) external
frequencies suppressed, (b) internal frequencies suppressed.

the full set of frequencies, the tree of Fig. 15 requires only 4.75 comparisons,
on the average, while the trees of Fig. 16 require, respectively, 5.29 and 5.32.
(A straight binary search would have been better than the trees of Fig. 16
in this example.)

Since Algorithm K requires time and space proportional to n2, it becomes
impractical to use it when n is very large. Of course we may not really want
to use binary search trees for large n, in view of the other search techniques to
be discussed later in this chapter; but let’s assume anyway that we want to
find an optimum or nearly optimum tree when = is large.

We have seen that the idea of inserting the keys in order of decreasing
frequency can tend to make a fairly good tree, on the average; but it can also

b
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be very bad (see exercise 20), and it is not usually very near the optimum, since
it makes no use of the ¢; weights. Another approach is to choose the root % so
that the weights w(0, k£ — 1) and w(k, n) of the resulting subtrees are as near
to being equal as possible. This approach also fails, beeause it may choose a
node with very small p; to be the root.

A fairly satisfactory procedure can be obtained by combining these two
methods, as suggested by W. A. Walker and C. C. Gotlieb [Graph Theory and
Computing (Academic Press, 1972)]: Try to equalize the left-hand and right-
hand weights, but be prepared to move the root a few steps to the left or right
to find a node with relatively large pr. Figure 17 shows why this method is
reasonable: If we plot ¢(0, & — 1) -+ ¢(k, n) as a function of k, for the KWIC
data of Fig. 15, we see that the result is quite sensitive to the magnitude of p;.
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Fig. 17. Behavior of the cost as a funetion of the root, k.

A “top-down” method such as this can be used for large n to choose the
root and then to work on the left and the right subtrees. When we get down
to a sufficiently small subtree we can apply Algorithm K. The resulting method
vields fairly good trees (reportedly within 2 or 3 percent of the optimum),.and
it requires only O(n) units of space, O(n log n) units of time.

*The Hu-Tucker algorithm. In the special ease that all the p’s are zero, T. C. Hu
and A. C. Tucker have discovered a remarkable “bottom-up” way to construet
optimum trees; if appropriate data structures are used, their method requires
O(n) units of space and O(n log 31) units of time, and it constructs a tree whwh« =

is really optimum (not just apprommately s0). — )
The Hu-Tucker algorithm can be described as follows. =—"7 //L
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» PHASE 1, Combination. Start with the “working sequence” of weights
written inside of external nodes,

o (@) (18)

Then repeatedly combine two weights ¢; and g; for ¢ < j into a single weight
i + qj, deleting the node containing ¢; from the working sequence and replac-
ing the node containing g; by the tnternal node

This combination is to be done on the unique pair of weights (g;, q¢;) satisfying
the following rules:

1) No external nodes occur between i and ¢;. (This is the most important
rule which distinguishes the algorithm from Huffman’s method.)

ii) The sum ¢; + ¢; is minimum over all (g4, g;) satisfying rule (i).

iii) The index 7 is minimum over all (g1, g;) satisfying rules (i), (ii).

iv) The index j is minimum over all (gi, ¢;) satisfying rules (i), (i), (iii).

« PHASE 2, Level assignment. When Phase 1 ends, there is a single node left
in the working sequence. Mark it with level number 0. Then undo the steps
of Phase 1 in reverse order, marking level numbers of the corresponding tree;
if (19) has level /, the nodes containing ¢; and ¢; which formed it are marked
with level 7 - 1.

e PHASE 3, Recombination. Now we have the working sequence of external
nodes and levels

fl 12 ia

Iy

The internal nodes used in Phases 1 and 2 are now discarded, we shall create
new ones by combining weights (¢, ¢;) according to the following new rules:

i’)  The nodes containing ¢; and ¢; must be adjacent in the working
sequence.

1) The levels /; and /; must both be the maximum among all remaining
levels.
iii’) The index ¢ must be minimum over all (g, q;) satisfying (i"), (ii’).

The new node (19) is assigned level I; — 1. The binary tree formed during this
phase has minimum weighted path length over all binary trees whose external
nodes are weighted go, q4, . . . , ¢, from left to right.

Figure 18 shows an example of this algorithm; the weights ¢; are the relative
frequencies of the letters |, A, B, . . . » Z in English text. During Phase 1, the
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Fig. 18. The Hu-Tucker algorithm applied to alphabetic frequency data: Phases 1 and 2.
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first node formed is @, combining the J and K frequencies; then the node @
is formed (combining P and q), then

@r * @, ! ? r @, ! @r @! @r ?

at this point we have the working sequence

[186] [64] €D [108] @3 [57] @3 [57] [63] @ [51) [so] @).  (20)

Rule (i) allows us to combine nonadjacent weights only if they are separated by
internal nodes; so we can combine 57 -+~ 57, then 63 + 51, then 58 -+ 64, ete.

The level numbers assigned during Phase 2 appear at the right of each
node in Fig. 18. The recombination during Phase 3 now yields the tree shown
in Fig. 19; note that things must be associated differently in this tree than in
Fig. 18, because Fig. 18 does not preserve the left-to-right ordering. But Fig. 19
has the same cost as Fig. 18, since the external nodes appear at the same levels
in both trees.

Consider a simple example where the weights are 4, 3, 2, 4; the unique
optimum tree is easily shown to be

(21)

This example shows that the two smallest weights, 2 and 3, should not always
be combined in an optimum tree, even when they are adjacent; some recom-
bination phase is needed.

It is beyond the scope of this book to give a proof that the Hu-Tucker
algorithm is valid; no simple proof is known, and it is quite possible that no
simple proof will ever be found! In order to illustrate the inherent complexities
of the situation, note that Phase 3 must combine all nodes into a single tree,
and this is not obviously possible. For example, suppose that Phases 1 and 2
were to construct the tree

(22)

by combining nodes @, @, @, @, @ in this order; this accords with rule
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(i). Then Phase 3 will get stuck after forming

o 41 e G5

3 2 2 2 3

because the two level-3 nodes are not adjacent! Rule (i) does not by itself
guarantee that Phase 3 will be able to proceed, and it is necessary to prove that
configurations like (22) will never be constructed during Phase 1.

When implementing the Hu-Tucker algorithm, we ean maintain priority
queues for the sets of node weights which are not separated by external nodes.
For example, (20) could be represented by priority queues containing,
respectively,

64 & 5 ., 5l )
1§§ 67 83 57 gg 63 gé gg (23)
103 103 58 64

plus information about which of these is external, and an indieation of left-to-
right order for breaking ties by rules (iii) and (iv). Another “master” priority
queue can keep track of the sums of the two least elements in the other queues.
The creation of the new node 57 -~ 57 causes three of the above priority queues
to be merged. When priority queues are represented as leftist trees (ef. Sec-
tion 5.2.3), each combination step of Phase 1 requires at most O(log n) opera-
tions; thus O(n log n) operations suffice as n — o«. Of course for small n it will
be more efficient to use a comparatively straightforward O(n?) method of
implementation.

The optimum binary tree in Fig. 19 has an interesting application to coding
theory as well as to searching: Using 0 to stand for a left branch in the tree and
1 to stand for a right branch, we obtain the following variable-length codewords:

L 000 I 1000 R 11001

A 0010 J 1001000 s 1101

B 001100 K 1001001 T 1110

c 001101 L 100101 U 111100

D 00111 M 10011 v 111101 (24)
E 010 N 1010 W 111110

F 01100 0 1011 X 11111100

G 01101 P 110000 Yy 11111101

H 0111 Q@ 110001 zZ 1111111

Thus a message like “RIGHT ON” would be encoded by the string

110011000011010111111000010111010.
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Note that decoding from left to right is easy, in spite of the variable length of
the codewords, because the tree structure tells us when one codeword ends and
another begins. This method of eoding preserves the alphabetical order of
messages, and 1t uses an average of about 4.2 bits per letter. Thus the code
could be used to compress data files, without destroying lexicographic order of
alphabetic information. (The figure of 4.2 bits per letter is minimum over all
binary tree codes, although it could be reduced to 4.1 bits per letter if we dis-
regarded the alphabetic ordering econstraint. A further reduction, preserving
alphabetic order, could be achieved if pairs of letters instead of single letters
were encoded.)

An interesting asymptotic bound on the minimum weighted path length
of search trees has been derived by E. N. Gilbert and E. F. Moore:

Theorem G. [f p; = py = + -+ = p, = 0, the weighted path length of an opti-
mum binary search tree lies between

> ailoga Q/q)  and 204+ D qiloge (Q/q)),

0<i<n 0<i<n
where @ = Y o<i<n Gi-

Proof. To get the lower bound, we use induction on n. If n > 0 the weighted
external path length is at least

Q-+ > ailogs Qi/g) + D, qilogs (@ — Q1)/4:)
0<i<k k<i<n
> Y gilogs (Q/g) +/(Qu),

0<iZn
for some %, where
Q1= Z 4,
0<i<k
and

f@1) = Q@+ Q1 loga @1 + (@ — @) logs (Q — Q1) — Qloge Q.

The funetion f(Q,) is nonnegative, and it takes its minimum value 0 when
Q1 = Q.

To get the upper bound, we may assume that @ = 1. Let ey, ..., e, be
integers such that 27% < ¢; < 2'7% for 0 < ¢ < n. Construct codewords C;
of 0’s and 1’s, by using the most significant e; -+ 1 binary digits of the fraction
>o<k<:i @k + %¢;, expressed in binary notation. Exercise 35 proves that (; is
never an initial substring of C'; when ¢ # j; it follows that we ecan construct a
binary search tree corresponding to these codewords. For example when the
¢’s are the letter frequencies of Fig. 19, this construction gives Cy = 0001,



