Information is often represented using bit strings, which are lists of zeros and ones. When this is done, operations on the bit strings can be used to manipulate this information.

DEFINITION 7

A *bit string* is a sequence of zero or more bits. The *length* of this string is the number of bits in the string.

EXAMPLE 12

101010011 is a bit string of length nine.

We can extend bit operations to bit strings. We define the *bitwise OR*, *bitwise AND*, and *bitwise XOR* of two strings of the same length to be the strings that have as their bits the OR, AND, and XOR of the corresponding bits in the two strings, respectively. We use the symbols \lor, \land, and \oplus to represent the bitwise OR, bitwise AND, and bitwise XOR operations, respectively.

EXAMPLE 13

Find the bitwise OR, bitwise AND, and bitwise XOR of the bit strings 01 1011 0110 and 11 0001 1101. (Here, and throughout this book, bit strings will be split into blocks of four bits to make them easier to read.)

Solution:

The bitwise OR, bitwise AND, and bitwise XOR of these strings are obtained by taking the OR, AND, and XOR of the corresponding bits, respectively. This gives us

<table>
<thead>
<tr>
<th></th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0101</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1101</td>
<td>bitwise OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0100</td>
<td>bitwise AND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1001</td>
<td>bitwise XOR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exercises

1. Which of these sentences are propositions? What are the truth values of those that are propositions?
 - a) Boston is the capital of Massachusetts.
 - b) Miami is the capital of Florida.
 - c) $2 + 3 = 5$.
 - d) $5 + 7 = 10$.
 - e) $x + 2 = 11$.
 - f) Answer this question.
2. Which of these are propositions? What are the truth values of those that are propositions?
 - a) Jennifer and Teja are friends.
 - b) There are 13 items in a baker’s dozen.
 - c) Abby sent more than 100 text messages every day.
 - d) 121 is a perfect square.
 - e) The moon is made of green cheese.
 - f) $2^n \geq 100$.

3. What is the negation of each of these propositions?
 - a) Mei has an MP3 player.
 - b) There is no pollution in New Jersey.
 - c) The summer in Maine is hot and sunny.
 - d) 4 + $x = 5$.
 - e) The moon is made of green cheese.

4. What is the negation of each of these propositions?
 - a) Jennifer and Teja are friends.
 - b) There are 13 items in a baker’s dozen.
 - c) Abby sent more than 100 text messages every day.
 - d) 121 is a perfect square.
5. What is the negation of each of these propositions?
 a) Steve has more than 100 GB free disk space on his laptop.
 b) Zach blocks e-mails and texts from Jennifer.
 c) 7 < 11 means 13 = 999.
 d) Diane rode her bicycle 100 miles on Sunday.

6. Suppose that Smartphone A has 256 MB RAM and 32 GB ROM, and the resolution of its camera is 8 MP; Smartphone B has 288 MB RAM and 64 GB ROM, and the resolution of its camera is 5 MP; Smartphone C has 128 MB RAM and 32 GB ROM, and the resolution of its camera is 12 MP. Determine the truth value of each of these propositions.
 a) Smartphone B has the most RAM of these three smartphones.
 b) Smartphone C has more RAM or a higher resolution camera than Smartphone B.
 c) Smartphone B has more RAM, more ROM, and a higher resolution camera than Smartphone A.
 d) If Smartphone B has more RAM and more ROM than Smartphone C, then it also has a higher resolution camera.
 e) Smartphone A has more RAM than Smartphone B if and only if Smartphone B has more RAM than Smartphone A.

7. Suppose that during the most recent fiscal year, the annual revenue of Acme Computer was 138 billion dollars and its net profit was 8 billion dollars, the annual revenue of Nadir Software was 87 billion dollars and its net profit was 5 billion dollars, and the annual revenue of Quixote Media was 111 billion dollars and its net profit was 13 billion dollars. Determine the truth value of each of these propositions for the most recent fiscal year.
 a) Quixote Media had the largest annual revenue.
 b) Nadir Software had the lowest net profit and Acme Computer had the largest annual revenue.
 c) Acme Computer had the largest net profit or Quixote Media had the largest net profit.
 d) If Quixote Media had the smallest net profit, then Acme Computer had the largest annual revenue.
 e) Nadir Software had the smallest net profit if and only if Acme Computer had the largest annual revenue.

8. Let p and q be the propositions
 p: I bought a lottery ticket this week.
 q: I won the million dollar jackpot.

 Express each of these propositions as an English sentence.
 a) ¬p
 b) p ∨ q
 c) p → q
 d) p ∧ q
 e) p ↔ q
 f) ¬p ∨ ¬q
 g) ¬p ∧ ¬q
 h) ¬p → ¬q
 i) p ↔ q
 j) ¬p ∨ ¬q

9. Let p and q be the propositions “Swimming at the New Jersey shore is allowed” and “Sharks have been spotted near the shore,” respectively. Express each of these compound propositions as an English sentence.
 a) ¬p
 b) p ∧ q
 c) ¬p ∨ q
 d) p → ¬q
 e) ¬q → p
 f) ¬p → ¬q
 g) ¬q ∨ (p ∨ ¬q)

10. Let p and q be the propositions “The election is decided” and “The votes have been counted,” respectively. Express each of these compound propositions as an English sentence.
 a) ¬p
 b) p ∨ q
 c) ¬p ∧ ¬q
 d) q → p
 e) ¬q → ¬p
 f) ¬p → ¬q
 g) p → ¬q
 h) ¬p ∨ (¬p ∧ ¬q)

11. Let p and q be the propositions
 p: It is below freezing.
 q: It is snowing.

 Write these propositions using p and q and logical connectives (including negations).
 a) It is below freezing and snowing.
 b) It is below freezing but not snowing.
 c) It is not below freezing and it is not snowing.
 d) It is either snowing or below freezing (or both).
 e) If it is below freezing, it is also snowing.
 f) Either it is below freezing or it is snowing, but it is not snowing if it is below freezing.
 g) That it is below freezing is necessary and sufficient for it to be snowing.

12. Let p, q, and r be the propositions
 p: You have the flu.
 q: You miss the final examination.
 r: You pass the course.

 Express each of these propositions as an English sentence.
 a) p → q
 b) ¬q → r
 c) q → ¬r
 d) p ∨ q ∨ r
 e) (p → ¬r) ∨ (q → ¬r)
 f) (p ∧ q) ∨ (¬q ∧ r)

13. Let p and q be the propositions
 p: You drove over 65 miles per hour.
 q: You get a speeding ticket.

 Write these propositions using p and q and logical connectives (including negations).
 a) You do not drive over 65 miles per hour.
 b) You drive over 65 miles per hour, but you do not get a speeding ticket.
 c) You will get a speeding ticket if you drive over 65 miles per hour.
 d) You do not drive over 65 miles per hour, then you will not get a speeding ticket.
 e) Driving over 65 miles per hour is sufficient for getting a speeding ticket.
 f) You get a speeding ticket, but you do not drive over 65 miles per hour.
 g) Whenever you get a speeding ticket, you are driving over 65 miles per hour.

14. Let p, q, and r be the propositions
 p: You get an A in this class.
 q: You do every exercise in this book.
 r: You get an A in this class.

 Write these propositions using p, q, and r and logical connectives (including negations).
For each of these sentences, determine whether an inclusive or, or an exclusive or, is intended. Explain your answer.

a) You get an A in this class, but you do not do every exercise in this book.
b) You get an A on the final, you do every exercise in this book, and you get an A in this class.
c) To get an A in this class, it is necessary for you to get an A on the final.
d) You get an A on the final, but you don’t do every exercise in this book; nevertheless, you get an A in this class.
e) Getting an A on the final and doing every exercise in this book is sufficient for getting an A in this class.
f) You will get an A in this class if and only if you either do every exercise in this book or you get an A on the final.

15. Let p, q, and r be the propositions:

- p: Grizzly bears have been seen in the area.
- q: Hiking is safe on the trail.
- r: Berries are ripe along the trail.

Write these propositions using p, q, and r and logical connectives (including negations).

a) Berries are ripe along the trail, but grizzly bears have not been seen in the area.

b) Grizzly bears have not been seen in the area and hiking on the trail is safe, but berries are ripe along the trail.

c) If berries are ripe along the trail, then hiking is safe on the trail, but grizzly bears have not been seen in the area.

d) It is safe to hike on the trail, but grizzly bears have not been seen in the area and the berries along the trail are ripe.

e) For hiking on the trail to be safe, it is necessary but not sufficient that berries not be ripe along the trail and for grizzly bears not to have been seen in the area.

f) Hiking is not safe on the trail whenever grizzly bears have been seen in the area and berries are ripe along the trail.

16. Determine whether these biconditionals are true or false.

a) $2 + 2 = 4$ if and only if $1 + 1 = 2$.
b) $1 + 1 = 2$ if and only if $2 + 3 = 5$.
c) $1 + 1 = 3$ if and only if monkeys can fly.
d) $0 > 1$ if and only if $2 > 1$.

17. Determine whether each of these conditional statements is true or false.

a) If $1 + 1 = 2$, then $2 + 2 = 5$.
b) If $1 + 1 = 3$, then $2 + 2 = 4$.
c) If $1 + 1 = 3$, then $2 + 2 = 5$.
d) If monkeys can fly, then $1 + 1 = 3$.

18. Determine whether each of these conditional statements is true or false.

a) If $1 + 1 = 3$, then unicorns exist.
b) If $1 + 1 = 3$, then dogs can fly.
c) If $1 + 1 = 3$, then dogs can fly.
d) If $2 + 2 = 4$, then $1 + 2 = 3$.

19. For each of these sentences, determine whether an inclusive or, or an exclusive or, is intended. Explain your answer.

a) Coffee or tea comes with dinner.
b) A password must have at least three digits or be at least eight characters long.
c) The prerequisite for the course is a course in number theory or a course in cryptography.
d) You can pay using U.S. dollars or euros.

20. For each of these sentences, determine whether an inclusive or, or an exclusive or, is intended. Explain your answer.

a) Experience with C++ or Java is required.
b) Lunch includes soup or salad.
c) To enter the country you need a passport or a voter registration card.
d) Publish or perish.

21. For each of these sentences, state what the sentence means if the logical connective or is an inclusive or (that is, a disjunction) versus an exclusive or. Which of these meanings of or do you think is intended?

a) To take discrete mathematics, you must have taken calculus or a course in computer science.

b) When you buy a new car from Acme Motor Company, you get $2000 back in cash or a 2% car loan.

c) Dinner for two includes two items from column A or three items from column B.

d) School is closed if more than 2 feet of snow falls or if the wind chill is below -100.

22. Write each of these statements in the form “if p, then q” in English. [Hint: Refer to the list of common ways to express conditional statements provided in this section.]

a) It is necessary to wash the boss’ car to get promoted.

b) Winds from the south imply a spring thaw.

c) A sufficient condition for the warranty to be good is that you bought the computer less than a year ago.

d) Willy gets caught whenever he cheats.

e) You can access the website only if you pay a subscription fee.

f) Getting elected follows from knowing the right people.

g) Carol gets seasick whenever she is on a boat.

23. Write each of these statements in the form “if p, then q” in English. [Hint: Refer to the list of common ways to express conditional statements.]

a) It snows whenever the wind blows from the northeast.

b) The apple trees will bloom if it stays warm for a week.

c) That the Pistons win the championship implies that they beat the Lakers.

d) It is necessary to walk 8 miles to get to the top of Long’s Peak.

e) To get tenure as a professor, it is sufficient to be world-famous.

f) If you drive more than 400 miles, you will need to buy gasoline.

g) Your guarantee is good only if you bought your CD player less than 90 days ago.

h) Jan will go swimming unless the water is too cold.
Solving Satisfiability Problems

A truth table can be used to determine whether a compound proposition is satisfiable, or equivalently, whether its negation is a tautology (see Exercise 60). This can be done by hand for a compound proposition with a small number of variables, but when the number of variables grows, this becomes impractical. For instance, there are 2^{1000} (a number with more than 300 decimal digits) possible combinations of truth values of the variables in a compound proposition cannot be done by a computer in even trillions of years. No procedure is known that a computer can follow to determine in a reasonable amount of time whether an arbitrary compound proposition in such a large number of variables is satisfiable. However, progress has been made developing methods for solving the satisfiability problem for the particular types of compound propositions that arise in practical applications, such as for the solution of Sudoku puzzles. Many computer programs have been developed for solving satisfiability problems which have practical use. In our discussion of the subject of algorithms in Chapter 3, we will discuss this question further. In particular, we will explain the important role the propositional satisfiability problem plays in the study of the complexity of algorithms.

Exercises

1. Use truth tables to verify these equivalences.
 - \(p \land T \equiv p \)
 - \(p \lor F \equiv p \)
 - \(p \lor F \equiv F \)
 - \(p \lor T \equiv T \)
 - \(p \land p \equiv p \)
 - \(p \lor p \equiv p \)
2. Show that \((\neg p \land q)\) and \(p\) are logically equivalent.
3. Use truth tables to verify the commutative laws.
 - \(p \lor q \equiv q \lor p \)
 - \(p \land q \equiv q \land p \)
4. Use truth tables to verify the associative laws.
 - \((p \lor q) \lor r \equiv p \lor (q \lor r) \)
 - \((p \land q) \land r \equiv p \land (q \land r) \)
5. Use a truth table to verify the distributive law.
 - \(p \land (q \lor r) \equiv (p \land q) \lor (p \land r) \)
6. Use a truth table to verify the first De Morgan law.
 - \(\neg (p \lor q) \equiv \neg p \land \neg q \)
7. Use De Morgan’s laws to find the negation of each of the following statements.
 - Jan is rich and happy.
 - Carlos will bicycle or run tomorrow.

Henry Maurice Sheffer (1883–1964)
Let $c)$ denote the statement "x is the capital of y.

What are these truth values?

(a) $\exists a) of all animals.

(b) $\forall b) consists of all people.

(c) $\exists c) x(C(x)

is "the word x is "Russian and who knows C

(d) $\exists d) xP(x)$

be the statement "the word x (true)

be the statement "the word x (false).

Express each of these sentences in terms of

$a)$ $P(0)$ b) $P(1)$ c) $P(2)$

d) $P(\neg)$ e) $P(\forall)$

11. Let $P(x)$ be the statement "$x = x^2$." If the domain consists of the integers, what are these truth values?

(a) $\exists a) n(n

b) $\exists b) n(n

(c) $\exists c) n(n

d) $\exists d) n(n

e) $\exists e) n(n

12. Let $Q(x)$ be the statement "$x + 1 > 2x$." If the domain consists of all integers, what are these truth values?

(a) $Q(0)$ b) $Q(1)$ c) $Q(2)$

d) $\exists e) Q(x)$ e) $\forall f) Q(x)$

g) $\forall g) \neg Q(x)$

13. Determine the truth value of each of these statements if the domain consists of all integers.

(a) $\forall a) n(n

b) $\exists b) n(n

c) $\exists c) n(n

d) $\exists d) n(n

e) $\exists e) n(n

14. Determine the truth value of each of these statements if the domain consists of all real numbers.

(a) $\exists a) x(x

b) $\exists b) x(x

c) $\exists c) x(x

d) $\exists d) x(x

e) $\exists e) x(x

15. Determine the truth value of each of these statements if the domain consists of all real numbers.

(a) $\exists a) x(x

b) $\exists b) x(x

c) $\exists c) x(x

d) $\exists d) x(x

e) $\exists e) x(x

16. Determine the truth value of each of these statements if the domain consists of all real numbers.

(a) $\forall a) n(n

b) $\exists b) n(n

c) $\exists c) n(n

d) $\exists d) n(n

e) $\exists e) n(n

17. Suppose that the domain of the propositional function $P(x)$ consists of the integers 0, 1, 2, 3, and 4. Write out each of these propositions using disjunctions, conjunctions, and negations.

(a) $\exists a) P(x)$ b) $\forall b) P(x)$ c) $\exists c) \neg P(x)$

d) $\forall d) \neg P(x)$ e) $\forall e) \neg P(x)$

18. Suppose that the domain of the propositional function $P(x)$ consists of the integers -2, -1, 0, and 1. Write out each of these propositions using disjunctions, conjunctions, and negations.

(a) $\exists a) P(x)$ b) $\forall b) P(x)$

d) $\exists d) \neg P(x)$ e) $\forall e) \neg P(x)$

19. Let $P(x)$ be the statement "x has a cat," let $D(x)$ be the statement "x has a dog," and let $F(x)$ be the statement "x has a ferret." Express each of these statements in terms of $C(x)$, $D(x)$, $F(x)$, quantifiers, and logical connectives.

(a) A student in your class has a cat, a dog, and a ferret.

(b) All students in your class have a cat, a dog, or a ferret.

(c) Some student in your class has a cat and a ferret, but not a dog.

(d) No student in your class has a cat, a dog, and a ferret.

(e) For each of the three animals, cats, dogs, and ferrets, there is a student in your class who has this animal as a pet.

20. Let $C(x)$ be the statement "x has a cat," let $D(x)$ be the statement "x has a dog," and let $F(x)$ be the statement "x has a ferret." Express each of these statements in terms of $C(x)$, $D(x)$, $F(x)$, quantifiers, and logical connectives.

(a) A student in your class has a cat and a dog, and a ferret.

(b) All students in your class have a cat, a dog, or a ferret.

(c) A student in your class has a cat and a ferret, but not a dog.

(d) No student in your class has a cat, a dog, and a ferret.

(e) For each of the three animals, cats, dogs, and ferrets, there is a student in your class who has this animal as a pet.
19. Suppose that the domain of the propositional function $P(x)$ consists of the integers 1, 2, 3, 4, and 5. Express these statements without using quantifiers, instead using only negations, disjunctions, and conjunctions.

a) $\exists x P(x)$

b) $\forall x P(x)$

c) $\neg \exists x P(x)$

d) $\neg \forall x P(x)$

e) $\forall x (x \neq 3) \rightarrow P(x)$

f) $\exists x (x \neq 3) \lor \exists x \neg P(x)$

20. Suppose that the domain of the propositional function $P(x)$ consists of $\{0, 1, 2, 3, 4, 5\}$. Express these statements without using quantifiers, instead using only negations, disjunctions, and conjunctions.

a) $\exists x P(x)$

b) $\forall x P(x)$

c) $\forall x (x \neq 3) \rightarrow P(x)$

d) $\exists x (x \neq 3) \lor \exists x \neg P(x)$

e) $\exists x P(x) \land \forall x P(x)$

f) $\exists x (x \neq 3) \land \exists x \neg P(x)$

21. For each of these statements find a domain for which the statement is true and a domain for which the statement is false.

a) Everyone is studying discrete mathematics.

b) Everyone is older than 21 years.

c) Everyone speaks Hindi.

d) Everyone in your class has studied calculus and C++.

e) Everyone in your class was born in the twentieth century.

f) Everyone in your class enjoys Thai food.

g) Everyone in your class does not play hockey.

22. For each of these statements find a domain for which the statement is true and a domain for which the statement is false.

a) Everyone speaks Hindi.

b) There is someone older than 21 years.

c) Everything is in the correct place and in excellent condition.

d) Everything is in the correct place and is in excellent condition.

e) One of your tools is not in the correct place, but it is in excellent condition.

f) Everyone in your class is friendly.

g) No student in your class who was not born in California.

h) No student in your class has taken a course in logic programming.

23. Translate in two ways each of these statements into logical expressions using predicates, quantifiers, and logical connectives. First, let the domain consist of the students in your class and second, let it consist of all people.

a) Someone in your class can speak Hindi.

b) Everyone in your class is friendly.

c) There is a person in your class who was not born in California.

d) A student in your class has seen a foreign movie.

e) Everyone in your class has a cellular phone.

f) Everyone in your class has seen a foreign movie.

g) Everyone in your class has a computer.

24. Translate in two ways each of these statements into logical expressions using predicates, quantifiers, and logical connectives. First, let the domain consist of the students in your class and second, let it consist of all people.

a) Everyone in your class can play the guitar.

b) Everyone in your class does not want to be rich.

c) Everyone in your class is friendly.

d) Everyone in your class has a computer.

25. Translate each of these statements into logical expressions using predicates, quantifiers, and logical connectives.

a) No one is perfect.

b) Not everyone is perfect.

c) All your friends are perfect.

d) At least one of your friends is perfect.

e) Everyone is your friend and is perfect.

f) Not everybody is your friend or someone is not perfect.

26. Translate each of these statements into logical expressions in three different ways by varying the domain and by using predicates with one and with two variables.

a) Someone in your school has visited Uzbekistan.

b) Everyone in your class has studied calculus and C++.

c) No one in your school owns both a bicycle and a motorcycle.

d) There is a person in your school who is not happy.

e) Everyone in your school was born in the twentieth century.

27. Translate each of these statements into logical expressions in three different ways by varying the domain and by using predicates with one and with two variables.

a) A student in your school has lived in Vietnam.

b) Everyone is your friend and is perfect.

c) Not everybody is your friend or someone is not perfect.

d) Everyone in your class has studied calculus and C++.

28. Translate each of these statements into logical expressions using predicates, quantifiers, and logical connectives.

a) Some propositions are tautologies.

b) The negation of a contradiction is a tautology.

c) The conjunction of two tautologies is a tautology.

29. Express each of these statements using logical operators, predicates, and quantifiers.

a) Some propositions are tautologies.

b) The negation of a contradiction is a tautology.

c) The conjunction of two tautologies is a tautology.

30. Suppose the domain of the propositional function $P(x, y)$ consists of pairs x and y, where x is 1, 2, or 3 and y is 1, 2, or 3. Write out these propositions using disjunctions and conjunctions.

a) $\exists x P(x, 3)$

b) $\forall y P(1, y)$

c) $\exists y P(x, 2)$

d) $\forall x \exists y P(x, y)$

31. Suppose that the domain of $Q(x, y, z)$ consists of triples x, y, z, where $x = 0$, 1, or 2, and $y = 0$ or 1, and $z = 0$ or 1. Write out these propositions using disjunctions and conjunctions.

a) $\forall y Q(0, y, 0)$

b) $\exists x \exists y Q(x, 1, 1)$

c) $\exists z Q(0, 0, z)$

d) $\exists z \neg Q(x, 0, 1)$
32. Express each of these statements using quantifiers. Then form the negation of the statement so that no negation is to the left of a quantifier. Next, express the negation in simple English. (Do not simply use the phrase "It is not the case that ")
 a) All dogs have fleas.
 b) There is a horse that can add.
 c) Every koala can climb.
 d) No monkey can speak French.
 e) There exists a pig that can swim and catch fish.

33. Express each of these statements using quantifiers. Then form the negation of the statement, so that no negation is to the left of a quantifier. Next, express the negation in simple English. (Do not simply use the phrase "It is not the case that ")
 a) Some old dogs can learn new tricks.
 b) No rabbit knows calculus.
 c) Every bird can fly.
 d) There is no dog that can talk.
 e) There is no one in this class who knows French and Russian.

34. Express the negation of these propositions using quantifiers, and then express the negation in English.
 a) Some drivers do not obey the speed limit.
 b) All Swedish movies are serious.
 c) No one can keep a secret.
 d) There is someone in this class who does not have a good attitude.

35. Find a counterexample, if possible, to these universally quantified statements, where the domain for all variables consists of all integers.
 a) \(\forall x (x^2 \geq x) \)
 b) \(\forall x (x > 0 \land x < 0) \)
 c) \(\exists x (x = 1) \)

36. Find a counterexample, if possible, to these universally quantified statements, where the domain for all variables consists of all real numbers.
 a) \(\forall x (x^2 \neq x) \)
 b) \(\forall x (x^2 \neq 2) \)
 c) \(\exists x (|x| > 0) \)

37. Express each of these statements using predicates and quantifiers.
 a) A passenger on an airline qualifies as an elite flyer if the passenger flies more than 25,000 miles in a year or takes more than 25 flights during that year.
 b) A man qualifies for the marathon if his best previous time is less than 3 hours and a woman qualifies for the marathon if her best previous time is less than 3.5 hours.
 c) A student must take at least 60 course hours, or at least 45 course hours and write a master’s thesis, and receive a grade no lower than a B in all required courses, to receive a master’s degree.
 d) There is a student who has taken more than 21 credit hours in a semester and received all A’s.

38. Translate these system specifications into English where the predicate \(S(x) \) is “\(x \) is in state \(y \)” and where the domain for \(x \) and \(y \) consists of all systems and all possible states, respectively.
 a) \(\exists x S(x, \text{open}) \)
 b) \(\forall y (S(x, \text{malfunctioning}) \lor S(x, \text{diagnostic})) \)
 c) \(\exists x S(x, \text{open}) \land \exists y (S(x, \text{diagnostic})) \)
 d) \(\exists x \neg S(x, \text{available}) \)
 e) \(\forall x \neg S(x, \text{working}) \)

39. Translate these system specifications into English where \(F(p) \) is “Printer \(p \) is out of service,” \(B(p) \) is “Printer \(p \) is busy,” \(L(j) \) is “Print job \(j \) is lost,” and \(Q(j) \) is “Print job \(j \) is queued.”
 a) \(\exists p (F(p) \land B(p) \rightarrow \exists j L(j)) \)
 b) \(\forall p (B(p) \rightarrow \exists j Q(j)) \)
 c) \(\exists j (Q(j) \land L(j)) \rightarrow \exists p F(p) \)
 d) \((\forall p B(p) \land \exists j Q(j)) \rightarrow \exists j L(j) \)

40. Express each of these system specifications using predicates, quantifiers, and logical connectives.
 a) When there is less than 30 megabytes free on the hard disk, a warning message is sent to all users.
 b) No directories in the file system can be opened and no files can be closed when system errors have been detected.
 c) The file system cannot be backed up if there is a user currently logged on.
 d) Video on demand can be delivered when there are at least 8 megabytes of memory available and the connection speed is at least 56 kilobits per second.

41. Express each of these system specifications using predicates, quantifiers, and logical connectives.
 a) At least one mail message, among the nonempty set of messages, can be saved if there is a disk with more than 10 kilobytes of free space.
 b) Whenever there is an active alert, all queued messages are transmitted.
 c) The diagnostic monitor tracks the status of all systems except the main console.
 d) Each participant on the conference call whom the host of the call did not put on a special list was billed.

42. Express each of these system specifications using predicates, quantifiers, and logical connectives.
 a) Every user has access to an electronic mailbox.
 b) The system mailbox can be accessed by everyone in the group if the file system is locked.
 c) The firewall is in a diagnostic state only if the proxy server is in a diagnostic state.
 d) At least one router is functioning normally if the throughput is between 100 kbps and 500 kbps and the proxy server is not in diagnostic mode.