
Reviewed Papers

inroads – The SIGCSE Bulletin 98 Volume 37, Number 4, 2005 December

A Games-Based Approach for Teaching
the Introductory Programming Course

Rathika Rajaravivarma
Dept. of Computer Science

Central Connecticut State University
New Britain, Connecticut 06050 USA

RajaravivarmaR@ccsu.edu

Abstract
Introductory programming courses in computer science aim at building an effective foundation for the
development of programming skills. A prudent way to develop these skills is by emphasizing problem
solving and logical thinking. This paper proposes a games-based approach, as a way of engaging students
and developing these skills. Common mistakes of novice programmers in traditional courses are
summarized. Word and number games are used to illustrate the potential benefits of a games-based
approach, which minimizes such mistakes.

Keywords: CS1, pedagogy, games-based approach, game programming, word & number games, active
learning

1. Introduction
Innovative pedagogical approaches to teach the
introductory programming course, often referred as CS1, is
an ongoing topic of discussion across universities and
colleges around the world. The course is centered on the
three aspects of programming - design, development, and
testing. Inadequate balance in applying these concepts
results in disproportionate amount of time spent by the
students, leading to frustration and lack of motivation. This
is in fact a serious problem in this gateway course to
computer science. Motivation and involvement are crucial
factors in retaining students in a specific program. In this
paper the author emphasizes the problem identification
aspect of problem solving and proposes a games-based
approach that will bring a balance to the different phases of
program development. This approach encourages
experimentation and keeps the students involved and
engaged.

In the next section, the difficulties students encounter
and the mistakes they make are summarized. The
significance of the games-based approach, which provides
an active learning environment, is discussed in the
subsequent section. Here how this approach helps in
minimizing the usual weaknesses encountered in the
traditional approach is discussed. Two classes of games –
word and number – are described in the fourth section,
where several individual games in these classes are
identified for enhancing the learning of specific
programming skills. Additional benefits of the games-

approach and its intrinsic value in motivating and engaging
the students are discussed in the concluding section.

2. Shortcomings in the Program Development
Lifecycle using the Traditional Approach
The only way to learn programming is by actually doing it.
In an effort to accomplish this effectively several
approaches have been suggested [2,6,8]. In simple terms,
programming is problem solving using a computer
language. Once the problem is identified in the analysis
stage, programming involves three main phases: design,
development, and testing. This section discusses the
commonly observed weaknesses encountered, in each of
the four stages, with the traditional approach for teaching
CS1.

2.1 Analysis or Problem Identification
To identify the problem, conventionally the problem that
must be solved is specified to the students in a descriptive
form. Sometimes the description of the problem is
supplemented with classroom discussion. In spite of this,
many students have trouble interpreting the instructions [2].
They misread the information or miss the important details
or many times they do not know what the outcome they are
looking for.

2.2 Design
The next stage is designing the algorithm to solve the
problem on hand. When given a project, the immediate
reaction for majority of the students is to start coding,

Reviewed Papers

inroads – The SIGCSE Bulletin 99 Volume 37, Number 4, 2005 December

skipping the design phase. In spite of discussing the
software development activities and requiring the use of
design tools and detailed program description, many
students relate projects to coding. They fill in the
documentation and the design diagrams after the
completing the code. The phase of designing a solution to
the problem is lost in this approach.

2.3 Implementation
In the implementation part of the project, it is not
uncommon to see students start working on the code
without knowing where to start or what to do. Even when
they do know what to do, they are lost when they encounter
a problem. In an attempt to fix the code they tend to
change a few syntax and statements randomly, leading to
more confusion. In some instances they seek for help right
away without making an attempt to think through the
problem and the solution [7]

2.4 Testing
In the testing stage, the students tend to turn in the outputs
for which their program works well. The range of input
and the critical decision points are missed many times.
When a program does not function the way it is supposed
to, the students, due to lack of motivation, give up and fail
to work through the problem and correct the errors.

3. Significance of the Games-Based Approach
In order to minimize the above weaknesses in the
traditional approach, an alternate games-based approach is
proposed in this section.

3.1 The Games-Based Approach
Involving the students in critical thinking and applying
these skills to problem solving is a task by itself. In an
attempt to accentuate this concept, some institutions offer
courses focused on problem solving. The approach in this
paper uses games to supplement programming with the
logics of critical thinking. In this approach, the students
explore the problem in the form of games. They figure out
the problem themselves by playing the games. Each class
has a scheduled 10 minutes at the end of the period allotted
for playing games. The games played could be individual
games or team games. The games played are not limited to
the programming projects assigned to the students. Games
such as brainteasers, puzzles, mathematical problems, or
quiz type games can be introduced to make the students
open up for out-of-the-box thinking practice. In the
following class meeting time, the students turn in their
solution to the problem using a design tool. They write
down the steps to execute the game and the process, they
think will be needed, to implement the solution. The
games assigned for the projects are discussed in the
following class meeting time. This allows the students to
think through the problem or play the game enough number
of times to get the hang of it.

3.2 Characteristics of Game-based Approach
By analyzing and solving both simple and complex games,
the students create a stimulating environment that reflects
their learning. The games-based approach challenges the
students and enhances their problem-solving capabilities.
Dealing with the challenges and coming up with
appropriate solutions provide an enriched active learning
environment. The brain-based learning theory [5] refers to
this active learning process as metacognition: how you
know what you know. The learners in this approach are
encouraged to explore, gather and use information for some
of the commonly played games. Also, working in teams to
solve complex problems promotes collaborative learning
and strengthens the interpersonal communication skills.

The uniqueness of the game-based approach comes
with the involvement and the excitement of the
accomplishment. This method enables each student to
spend his or her own time to figure out the problem. They
explore different ways of arriving at the solution. In simple
fun games, the students may repeat the process just because
they want to see a different outcome. This keeps them
engaged and involved in the process. The game-based
approach acts as a confidence booster. A positive
stimulating experience is created when the computer games
they developed are shared with or executed by their friends
and families.

3.3 Minimizing the Weaknesses Using The Gaming
Strategy
Problem solving through games underscores the problem
identification and the design phases. Playing games
provides a visual representation to the abstract nature of the
problem. Conveying and describing the abstract concepts
is a difficult task in teaching programming. This difficulty
is overcome by game playing. By requiring the students
figure out the problem by playing games, the problem
identification phase is enhanced. Viewing the outcome and
interpreting the problem directly from the outcome clears
the misinterpretation. The design phase is materialized
when the students tackle the problem and propose a
solution using design tools. In simple games this phase is
not so apparent. But games that require a strategy to solve
(or need an algorithm) emphasize design.

The games-based approach enables the student to tie in
the design with coding. In some instances, the students
will not be able to start coding until a solution is figured
out. The visual outcome of game playing defines the goal
and serves as the starting point for the program
development phase. The solution for the game may not be
so obvious and there may be different ways to arrive at the
solution. Creative solutions are a great way to motivate
and involve students. It also gives them realities check on
how sound their solutions function. When the program
developed does not satisfy the required logics, it has the
potential to turn on the self-directed motivation. The

Reviewed Papers

inroads – The SIGCSE Bulletin 100 Volume 37, Number 4, 2005 December

students tend not to give up until they get the desired
results through numerous tests.

4. Illustration through Two Classes of Games
The course starts off with simple games that utilize basic
programming skills. As the course progresses games that
requires additional programming skills are implemented.
While simple games specific to the topic of discussion give
a head-start for novice programmers, more complex games
such as Nim [4] and Hangman [6] can be implemented in
phases. It should also be noted that the projects and
programs for the CS1 course may not be limited to the
games mentioned here. The traditional programming
projects can be supplemented wherever such project is
more appropriate to the topic of discussion.

The games discussed in this paper are grouped into
two broad categories: word games and number games.
Word games focuses on string and character manipulation

and number games focuses on working with integers and
random numbers. Both types of games take input from
users and read data from input files. Many of the games
discussed here are two player games, played against the
computer and the user. Since the approach to introduce
Java programming varies with institution [1,3], the choice
of using a GUI approach or terminal-based approach is left
to the discretion of the instructor.

4.1 Word Games
Five different word games are discussed here. Many of
these games start with a simple version and extend to
complex versions requiring additional functionalities.
These variations are implemented in several stages. The
final project is the implementation of Hangman. Table 1
lists the different word games and their variations. It also
summarizes the programming skills used in each game.

Table 1 List of Word games

Word Games and description Stages of implementation Programming skills needed

Interactive User Input -
Input data from user to insert words
in an existing passage.
1. Crazy passage (~ mad-libs)
2. What is …? (~ jeopardy)

1. passage such as telephone answering message can be used to
create a crazy message.
2. a. get answers from user for a passage like word definition
b. check answers
c. compute number and percentage of correct answers

- Terminal Input/Output
- String Concatenation
- Control Structures
- Use of algorithms to compute
statistics

Cryptogram –
Create a secret code from a given
word or text. Crypt and decrypt the
message

1. A simple character translation
2. translation from x characters to y characters
3. translation based on an algorithm

- Terminal Input/Output
- String / Character
Manipulation
- Use of simple algorithms

Word Search –
From a given line(s) of text, search
for a specific word.

1. The line of text to be searched from and the word to be
searched for can be input by the user or read from a file.
2. Search across multiple rows for data from a file.

- Terminal / File I/O
- String Manipulation
- Command Line Arguments
- Parameter Passing
- Arrays

Puzzle Maker –
Use word(s) entered by user to
create a text for word search.

1. Create a fixed line of text with random characters before and
after the word to be searched for.
2. Repeat above for multiple words
3. Repeat above to create multiple lines of text

- Terminal / File I/O
- String / Char. Manipulation
- Random Numbers
- Command Line Arguments
- Control Structures
- Arrays

Hangman –
In this game, the user has certain
number of chances to guess the
secret word displayed in a cryptic
form. If the user picks the letters in
the word before the chances run out
the user wins.

1. Generate the crypt for the word read from file.
2. Create the different stages of Hangman.
3. Display alphabet list and available alphabet list.
4. Put together stages 1 – 3

- Command Line Arguments
- Terminal / File I/O
- Random Numbers
- Control structures
- String / Char. Manipulation
- Parameter Passing
- Arrays
- Exception Handling

Reviewed Papers

inroads – The SIGCSE Bulletin 101 Volume 37, Number 4, 2005 December

4.2 Number Games
Five number games suitable for novice programmers are
discussed here. The first game starts with the player
guessing a randomly generated number. The randomly
generated number could be generated by the computer and
guessed by the user or narrowed by the computer using a
suitable logic and a series of questions leading to the
answer. Random numbers are used extensively in working
with number games. This provides lots of variations to the
problem that the programmer needs to think ahead.
Finally, the game of Nim, where players remove objects
from two stacks alternatively, is implemented. A sample
screen shot of the terminal-based version of this game is
shown in Figure 1.

In order to win the game of Nim, programmer has to
come up with a strategy. This part of the game emphasizes
the design process. A winning logic must be created before
the implementation. The different number games and the
programming skill sets needed to implement the games are
listed in Table 2.

5. Conclusion
Unlike other projects implemented in the introductory
programming course, the game-based approach provides a
better possibility to reuse and extend the capabilities of the
code developed in this course. This approach will be
utilized for the CS1 course in the forthcoming semester and
the effectiveness of this concept will be published. The
games-based approach underlies the importance of working
with algorithms and can be extended to advanced
programming and data structures.

Sharing the games, which were created by students
themselves during the span of this course, with friends and
families creates a positive environment for the students and
a sense of ownership in designing a solution to the

problem. More importantly, this approach creates a
passion to want to do more, a crucial factor sought after in
an introductory programming course. Further, this
approach stimulates the need to learn more advanced
features that could be applied to the gaming environment in
creating games that are more fun and exciting.

Figure 1 Sample screen shots for terminal-based Nim

References
[1] Barnes, D., and Kölling, M., Objects First with Java - A Practical Introduction Using BlueJ, Prentice-Hall, 2002.
[2] Giguette, Ray, “Pre-Games: Games Designed to Introduce CS1 and CS2 Programming Assignments,” Proceedings of the 34th

SIGCSE Technical Symposium on Computer Science Education, Vol. 35, No. 1, 2003
[3] Goldman, K. J., “A Concepts-First Introduction to Computer Science,” Proceedings of the 35th.SIGCSE Technical Symposium on

Computer Science Education, Norfolk, VA, 2004
[4] Greco, J., “Designing a Computer to Play Nim: A Mini-Capstone Project in Digital Design I, Proceedings of the ASEE Annual

conference and Exposition, Salt lake city, UT, 2004
[5] Ladeau, A, Brain-based Learning, http://www.fcae.nova.edu/~turgeonm/bbl.html
[6] Meyer, J. and Dwyer, C., “A Case Study In Teaching Programming Using A Hybrid Instructional Model,” The Proceedings of

ISECON, v 17, 2000
[7] Pollard, S. and Forbes, J., “Hands-On Labs Without Computers.”Proceedings of the 34th SIGCSE Technical Symposium on Computer

Science Education, Vol. 35, No. 1, 2003
[8] Raviv, Daniel, “Hands-On Activities For Innovative Problem Solving,” Proceedings of the ASEE Annual conference and Exposition,

Salt lake city, UT, 2004.

Reviewed Papers

inroads – The SIGCSE Bulletin 102 Volume 37, Number 4, 2005 December

Table 2 List of Number games

Number Game and Description Programming skills used

Guess the Number –
1. Use of simple algorithm to compute the result. Perform reverse calculations wherever applicable.

2. The Hi-Lo guessing game
User guesses the number generated by the computer. Computer provides hints as to high or low
guess until the user guesses the correct number.

3. The computer guesses the number the user had in mind (like birth date, month, or year) using
series of (yes / no) questions

- Terminal Input/Output
- Random Numbers
- Control Structures
- Emphasis on program design
(Version 3)

Slot Machine –
Generate 3 different random numbers. If they match, claim that the user is winner; else provide
appropriate messages.

- Random Numbers
- Control Structures

Rock, Paper, Scissors –
A simple game of strategy with a specific winning combination - With rock and scissors - rock wins;
With scissors and paper - scissors win; With paper and rock - paper wins.

The program can offer the choice of the computer or the user starting the game.
At the end of each game winner is announced. The game is repeated until the user desires.

- Terminal Input/Output
- Random Numbers
- Control Structures
- Emphasis on program design

Coin / Dice / Card games –
A number of different games can be generated using one or more computer simulated coin(s) / dice /
card(s).

- Terminal Input/Output
- Random Numbers
- Control Structures
- Used defined class(es)
- Emphasis on program design

Game of Nim –
This is a game based on strategy. From a stack of one or more piles players alternate by taking one
or more of the objects from a pile. The player taking the last object or stack of objects is the winner.
Can be generated in the terminal-based or GUI based form.

- Terminal Input/Output
- Random Numbers
- Control Structures
- Emphasis on program design
- Arrays
- Passing arrays of objects

ACM-W

ACM’s Committee on Women in Computing

NEWS / PUBLICATIONS PROJECTS AMBASSADORS
INTERNSHIPS RELATED SITES RESEARCH

<http://www.acm.org/women/>

