Conditions and Logic

Computer programs make decisions based on logic: if some condition applies, do something, otherwise, do something else.

Content Learning Objectives

After completing this activity, students should be able to:

- Evaluate boolean expressions with comparison operators ($<,\rangle,<=,>=,==$, ! $=$).
- Explain the syntax and meaning of if/else statements and indented blocks.
- Evaluate boolean expressions that involve comparisons with and, or, and not.

Process Skill Goals

During the activity, students should make progress toward:

- Evaluating complex logic expressions based on operator precedence. (Critical Thinking)

Model 1 Comparison Operators

In Python, a comparison (e.g., 100 < 200) will yield a Boolean value of either True or False. Most data types (including int, float, str, list, and tuple) can be compared using the following operators:

Operator	Meaning
$<$	less than
$<=$	less than or equal
$>$	greater than
$>=$	greater than or equal
$==$	equal
$!=$	not equal

Type the following code, one line at a time, into a Python Shell. Record the output for each line (if any) in the second column.

Python code	Shell output
type (True)	
type (true)	
type (3 < 4)	
print (3 < 4)	
three = 3	
four = 4	
print (three == four)	
check = three > four	
print (check)	
type (check)	
print (three = four)	
three = four	
print (three == four)	

Questions (10 min)

Start time:

\qquad

1. What is the name of the data type for Boolean values? \square
2. Do the words True and False need to be capitalized? Explain how you know.
3. For each of the following terms, identify examples from the table in Model 1:
a) Boolean variables: \square
b) Boolean operators: \square
c) Boolean expressions: \square
4. Explain why the same expression three == four had two different results.
5. What is the difference between the = operator and the == operator?
\square
6. Write a Boolean expression that uses the $!=$ operator and evaluates to False.

Model 2 iflelse Statements

An if statement makes it possible to control what code will be executed in a program, based on a condition. For example:

```
number = int(input("Enter an integer: "))
if number < 0:
    print(number, "is negative")
else:
    print(number, "is a fine number")
print("Until next time...")
```

Python uses indentation to define the structure of programs. The line indented under the if statement is executed only when number < 0 is True. Likewise, the line indented under the else statement is executed only when number < 0 is False. The flowchart on the right illustrates this behavior.

\qquad
7. What is the Boolean expression in Model 2?
\square
8. Enter this short program into a Python Editor. What is the output when the user enters the number 5 ? What is the output when the user enters the number -5 ?
\square
9. After an if-condition, what syntax differentiates between (1) statements that are executed based on the condition and (2) statements that are always executed?
\square
10. Enter the line _பธ $^{\text {print ("Hello") into a Python Editor (where }}{ }_{5}$ is a space), save the file as hello.py, and run the program. What happens if you indent code inconsistently?
\square
11. Based on the program in Model 2, what must each line preceding an indented block of code end with?
\square
12. Write an if statement that first determines whether number is even or odd, and then prints the message "(number) is even" or "(number) is odd". (Hint: use the \% operator.)
\square
13. Does an if statement always need to be followed by an else statement? Why or why not? Give an example.

Model 3 Boolean Operations

Expressions may include Boolean operators to implement basic logic. If all three operators appear in the same expression, Python will evaluate not first, then and, and finally or. If there are multiple of the same operator, they are evaluated from left to right.

Do not type anything yet! Read the questions first!

Python code	Predicted output	Actual output
print ($\mathrm{a}<\mathrm{b}$ and $\mathrm{b}<\mathrm{c}$)		
$\operatorname{print}(\mathrm{a}<\mathrm{b}$ or $\mathrm{b}<\mathrm{c}$)		
print ($\mathrm{a}<\mathrm{b}$ and $\mathrm{b}>\mathrm{c}$)		
$\operatorname{print}(\mathrm{a}<\mathrm{b}$ or $\mathrm{b}>\mathrm{c})$		
print (not $\mathrm{a}<\mathrm{b}$)		
print ($\mathrm{a}>\mathrm{b}$ or not $\mathrm{a}>\mathrm{c}$ and b > c)		

Questions (20 min) Start time: \qquad
14. What data type is the result of $\mathrm{a}<\mathrm{b}$? What data type is the result of $\mathrm{a}<\mathrm{b}$ and $\mathrm{b}<\mathrm{c}$?
\square
15. Predict the output of each print statement, based on the variables $a=3, b=4$, and $c=5$. Then execute each line in a Python Shell to check your work.
16. Based on the variables in \#15, what is the value of $a<b$? What is the value of $b<c$?
\square
17. If two True Boolean expressions are compared using the and operator, what is the resulting Boolean value?
\square
18. Using the variables defined in \#15, write an expression that will compare two False Boolean expressions using the or operator. Check your work using a Python Shell.
19. Assuming P and Q each represent a Boolean expression that evaluates to the Boolean value indicated, complete the following table. Compare your team's answers with another team's, and resolve any inconsistencies.

P	Q	P and Q	P or Q
False	False		
False	True		
True	False		
True	True		

20. Assume that two Boolean expressions are compared using the and operator. If the value of the first expression is False, is it necessary to determine the value of the second expression? Explain why or why not.
21. Assume that two Boolean expressions are compared using the or operator. If the value of the first expression is True, is it necessary to determine the value of the second expression? Explain why or why not.
\square
22. Examine the last row of the table in \#15. Evaluate the Boolean expression following the order of precedence rules explained in Model 3. Show your work by rewriting the line at each step and replacing portions with either True or False.
```
a > b or not a > c and b > c
```

23. Suppose you wanted to execute the statement sum $=x+y$ only when both x and y are positive. Determine the appropriate operators, and write a single Boolean expression for the if-condition.
24. Rewrite the expression from \#23 using the not operator. Your answer should yield the same result as in \#23, not the opposite. Describe in words what the new expression means.
\square
25. Suppose that your team needs to execute the statement sum $=x+y$ except when both x and y are positive. Write a Boolean expression for this condition. How is it different from the previous question?
\square
