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Abstract.  One of the potent personalization technologies powering the 
adaptive web is collaborative filtering. Collaborative filtering (CF) is the 
process of filtering or evaluating items through the opinions of other people. CF 
technology brings together the opinions of large interconnected communities on 
the web, supporting filtering of substantial quantities of data. In this chapter we 
introduce the core concepts of collaborative filtering, its primary uses for users 
of the adaptive web, the theory and practice of CF algorithms, and design 
decisions regarding design of rating systems and acquisition of ratings.  We 
also discuss how to evaluate CF systems, and the evolution of rich interaction 
interfaces. We close the chapter with discussions of the challenges of privacy 
particular to a CF recommendation service and important open research 
questions in the field. 

1 Introduction 

Collaborative Filtering is the process of filtering or evaluating items using the 
opinions of other people. While the term collaborative filtering (CF) has only been 
around for a little more than a decade, CF takes its roots from something humans have 
been doing for centuries - sharing opinions with others.  

For years, people have stood over the back fence or in the office break room and 
discussed books they have read, restaurants they have tried, and movies they have 
seen – then used these discussions to form opinions. For example, when enough of 
Amy’s colleagues say they liked the latest release from Hollywood, she might decide 



2      J. Ben Schafer, Dan Frankowski, Jon Herlocker, and Shilad Sen 

that she also should see it. Similarly, if many of them found it a disaster, she might 
decide to spend her money elsewhere. Better yet, Amy might observe that Matt 
recommends the types of films that she finds enjoyable, Paul has a history of 
recommending films that she despises, and Margaret just seems to recommend 
everything. Over time, she learns whose opinions she should listen to and how these 
opinions can be applied to help her determine the quality of an item. 

Computers and the web allow us to advance beyond simple word-of-mouth. 
Instead of limiting ourselves to tens or hundreds of individuals the Internet allows us 
to consider the opinions of thousands. The speed of computers allows us to process 
these opinions in real time and determine not only what a much larger community 
thinks of an item, but also develop a truly personalized view of that item using the 
opinions most appropriate for a given user or group of users. 

1.1 Core Concepts 

 
While this chapter considers a variety of CF systems, we introduce the topic 

through MovieLens1.  MovieLens is a collaborative filtering system for movies. A 
user of MovieLens rates movies using 1 to 5 stars, where 1 is “Awful” and 5 is “Must 
See”. MovieLens then uses the ratings of the community to recommend other movies 
that user might be interested in ( ), predict what that user might rate a movie, 
or perform other tasks.  

Figure 1

Figure 1: MovieLens uses collaborative filtering to predict that this user is likely 
to rate the movie “Holes” 4 out of 5 stars. 

 

      

 
                                                           

1 http://www.movielens.org/ 
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To be more formal, a rating consists of the association of two things – user and 
item. One way to visualize ratings is as a matrix ( ). Without loss of generality, 
a ratings matrix consists of a table where each row represents a user, each column 
represents a specific movie, and the number at the intersection of a row and a column 
represents the user’s rating value. The absence of a rating score at this intersection 
indicates that that user has not yet rated the item. 

Table 1

Table 1: A MovieLens ratings matrix. Amy rated the movie Sideways a 5. Matt has not seen 
The Matrix. 

 

 The Matrix Speed Sideways Brokeback 
Mountain 

Amy 1 2 5  
Matt  3 5 4 
Paul 5 5 2 1 
Cliff 5 5 5 5 

 
 
The term user refers to any individual who provides ratings to a system. Most 

often, we use this term to refer to the people using a system to receive information 
(e.g., recommendations) although it also refers to those who provided the data 
(ratings) used in generating this information. 

CF systems determine the quality of items. Items can consist of anything for which 
a human can provide a rating, such as art, books, CDs, journal articles, or vacation 
destinations. 

Ratings in a collaborative filtering system can take on a variety of forms.  
• Scalar ratings can consist of either numerical ratings, such as the 1-5 

stars provided in MovieLens or ordinal ratings such as strongly agree, 
agree, neutral, disagree, strongly disagree. 

• Binary ratings model choices between agree/disagree or good/bad. 
• Unary ratings can indicate that a user has observed or purchased an item, 

or otherwise rated the item positively. The absence of a rating indicates 
that we have no information relating the user to the item (perhaps they 
purchased the item somewhere else). 

 
Ratings may be gathered through explicit means, implicit means, or both. Explicit 

ratings are those where a user is asked to provide an opinion on an item. Implicit 
ratings are those inferred from a user’s actions. For example, a user who visits a 
product page perhaps has some interest in that product while a user who subsequently 
purchases the product may have a much stronger interest in that product. The issues of 
design decisions and tradeoffs regarding collection of different types of ratings are 
discussed in Section 4. 
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1.2 The Beginning of Collaborative Filtering 

As a formal area of research, collaborative filtering got its start as a means to 
handle the shifting nature of text repositories.  As content bases grew from mostly 
"official" content, such as libraries and corporate document sets, to "informal" content 
such as discussion lists and e-mail archives, the challenge of finding quality items 
shifted as well. Pure content-based techniques were often inadequate at helping users 
find the documents they wanted. Keyword-based representations could do an 
adequate job of describing the topic of documents, but could do little to help users 
understand the nature or quality of those documents. Hence, a keyword search for 
“Chicago Rocks” might yield not only scholarly articles by the Chicago Rocks and 
Minerals Society but also the “shallower” posting to a music bulletin board regarding 
the 1970s rock band.    

In the early 1990s there seemed to be two possible solutions to this new challenge:  
 

1. wait for improvements in artificial intelligence that would allow better automated 
classification of documents, or  

2. bring human judgment into the loop.  
 
While the challenges of automated classification have yet to be overcome, human 
judgment has proved valuable and relatively easy to incorporate into semi-automated 
systems2.  

The Tapestry system, developed at Xerox PARC, took the first step in this 
direction by incorporating user actions and opinions into a message database and 
search system [17]. Tapestry stored the contents of messages, along with metadata 
about authors, readers, and responders. It also allowed any user to store annotations 
about messages, such as "useful survey" or "Phil should see this!" Tapestry users 
could form queries that combined basic textual information (e.g. contains the phrase 
"recommender systems") with semantic metadata queries (e.g. written by John OR 
replied to by Joe) and annotation queries (e.g. marked as "excellent" by Chris). This 
model has become known as pull-active collaborative filtering, because it is the 
responsibility of the user who desires recommendations to actively pull the 
recommendations out of the database.  

Soon after the emergence of Tapestry, other researchers began to recognize the 
potential for exploiting the human "information hubs" that seem to naturally occur 
within organizations. Maltz and Ehrlich [37] developed a push-active collaborative 
filtering recommender system that made it easy for a person reading a document to 
push that document on to others in the organization who should see it. This type of 
push-recommender role has become popular, with many people today serving as "joke 
hubs" who receive jokes from all over and forward them to those they believe would 
appreciate them (though often with far less discriminating thought than was 
envisioned).  

A limitation of active collaborative filtering systems is that they require a 
community of people who know each other. Pull-active systems require that the user 

                                                           
2 For a slightly more broad discussion on the differences between collaborative filtering and 

content filtering, see Section 2.4 of this chapter. 
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know whose opinions to trust; push-active systems require that the user know to 
whom particular content may be interesting. Automated collaborative filtering (ACF) 
systems relieve users of this burden by using a database of historical user opinions to 
automatically match each individual to others with similar opinions.  

The early ACF systems included GroupLens [46,30] in the domain of Usenet 
newsgroup articles, Ringo [52] in the domain of music and musical artists, and 
Bellcore’s Video Recommender [24] in the domain of movies.  While a more formal 
discussion of recommendation algorithms follows in Section 3, each of these systems 
follow a process of gathering ratings from users, computing the correlations between 
pairs of users to identify a user’s “neighbors” in taste space, and combining the 
ratings of those neighbors to make recommendations. GroupLens used a very explicit 
interface where ratings of Usenet newsgroup articles were entered manually by 
keystroke or button, and ratings were displayed numerically or graphically ( ).  
Taking this a step further, both Ringo and Video Recommender were accessible 
through the web and email and provided simple features for community interaction.  

Figure 2

Figure 2: A modified Xrn news reader.  The GroupLens project added article 
predictions (lines of ### on the top right) and article rating buttons (bottom). 
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1.3 Collaborative Filtering and the Adaptive Web 

These early collaborative filtering systems were designed to explicitly provide 
users with information about items.  That is, users visited a website for the purpose of 
receiving recommendations from the CF system.  Later, websites began to use CF 
systems behind the scenes to adapt their content to users, such as choosing which 
news articles a website should be presenting prominently to a user.  

Providers of information on the web must deal with limited user attention and 
limited screen space. Collaborative filtering can predict what information users are 
likely to want to see, enabling providers to select subsets of information to display in 
the limited screen space. By placing that information prominently, it enables the user 
to maximize their limited attention. In this way, collaborative filtering enables the 
web to adapt to each individual user’s needs. 

The remainder of this chapter will discuss collaborative filtering in more depth by 
considering: 
• The tasks for which users might use a CF system, things a CF system is good at, 

and the kinds of domains for which CF is appropriate (Section 2) 
• Algorithms that CF systems employ (Section 3) 
• How types of ratings in a CF system affect design choices (Section 4) 
• How to evaluate and compare recommenders (Section 5) 
• Trends in the development of more interactive and explicitly social interfaces 

(Section 6)  
• The challenges to privacy and trust within CF systems (Section 7) 
• Open questions in the continuing development of CF systems (Section 8) 

2 Uses For Collaborative Filtering 

Thus far, we have only briefly introduced collaborative filtering systems.  
However, we may have still left readers asking the question “for what purposes is CF 
appropriate?”  In this section we consider this question by exploring user tasks that 
CF supports, then the services that CF systems provide, and finally, contrasting CF 
with content filtering, a technique that supports many of the same tasks, but using 
different technology. Throughout, we explore both well-understood technologies, and 
thought-provoking proposals that are not as well understood. 

2.1 User Tasks 

Designers of adaptive websites should carefully identify the possible tasks users 
may wish to accomplish with their site as different tasks may require different design 
decisions. From a marketing perspective, this is the value added by the CF system. In 
this section, we consider user tasks for which collaborative filtering is useful.  

Tasks for which people use collaborative filtering that have been studied include: 
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1. Help me find new items I might like. In a world of information overload, I cannot 
evaluate all things. Present a few for me to choose from. This has been applied 
most commonly to consumer items (music, books, movies), but may also be 
applied to research papers, web pages, or other ratable items.  

2. Advise me on a particular item. I have a particular item in mind; does the 
community know whether it is good or bad?   

3. Help me find a user (or some users) I might like. Sometimes, knowing who to 
focus on is as important as knowing what to focus on.  This might help with 
forming discussion groups [34], matchmaking, or connecting users so that they can 
exchange recommendations socially.  

4. Help our group find something new that we might like. CF can help groups of 
people find items that maximize value to group as a whole [41].  For example, a 
couple that wishes to see a movie together or a research group that wishes to read 
an appropriate paper. 

5. Domain-specific tasks. For example, a research paper recommender [55] might 
also wish to support 

a) recommend papers that this paper should cite 
b) recommend papers that should cite this paper 

 
Moreover, there are likely many tasks that are still undiscovered. Others are not yet 

well documented in the research literature, although they could be supported by the 
ratings data that collaborative filtering often has available. For example: 

 
6. Help me find an item, new or not. For example, I might wish a “balanced diet” of 

restaurants, including ones I’ve gone to before; or, I might wish to go to a 
restaurant with a group of people, even if some have already been there; or, I might 
wish to purchase some groceries that are appropriate for my shopping cart, even if 
I’ve already bought them before. 

7. Domain-specific tasks. For example, a recommender for a movie and a restaurant 
for 1) a first date versus 2) a guys’ night out. 
 
Note that “domain-specific tasks” are on both lists. Recommenders for some 

domain-specific tasks have been explored; many have not. To date, much research has 
focused on more abstract tasks (like “find new items”) while not probing deeply into 
the underlying user goals (like “find a movie for a first date”). 

2.2 Collaborative Filtering System Functionality 

There are also broad abstract families of tasks that CF systems support. It is no 
accident that this system functionality is related to the user tasks of the previous 
section. Ideally, the system would support all user tasks, although mapping a real 
application to the functionality of an actual CF system can be challenging. In any 
case, here are the broad families of common CF system functionality: 

 
1. Recommend items. Show a list of items to a user, in order of how useful they 

might be. Often this is described as predicting what the user would rate the item, 



8      J. Ben Schafer, Dan Frankowski, Jon Herlocker, and Shilad Sen 

then ranking the items by this predicted rating. However, some successful 
recommendation algorithms do not compute predicted rating values at all. For 
example, Amazon’s recommendation algorithm aggregates items similar to a user’s 
purchases and ratings without ever computing a predicted rating [33]. Instead of 
displaying a personalized predicted rating, their user interface displays the average 
customer rating. As a result, the recommendation list may appear out of order with 
respect to the displayed average rating value. In many applications, picking the top 
few items well is crucial; producing predicted values is secondary. 

2. Predict for a given item. Given a particular item, calculate its predicted rating. 
Note that prediction can be more demanding than recommendation. To recommend 
items, a system only needs to be prepared to offer a few alternatives, but not all. 
Some algorithms take advantage of this to be more scalable by saving memory and 
computation time [33, 47]. To provide predictions for a particular item, a system 
must be prepared to say something about any requested item, even rarely rated 
ones. How does a system decide how a particular user would rate a requested item 
if very few users – let alone users similar to the particular user – have rated the 
item?  Personalized predictions may be challenging, if not impossible.   

3. Constrained recommendations: Recommend from a set of items. Given a 
particular set or a constraint that gives a set of items, recommend from within that 
set. For example:  

“Consider the following scenario. Mary's 8-year-old nephew is visiting 
for the weekend, and she would like to take him to the movies. She 
would like a comedy or family movie rated no "higher" than PG-13. 
She would prefer that the movie contain no sex, violence or offensive 
language, last less than two hours and, if possible, show at a theater in 
her neighborhood. Finally, she would like to select a movie that she 
herself might enjoy.” [50] 

Schafer et al. [50] propose a “meta-recommendation system” that generates 
recommendations from a blending of multiple recommendation sources.   
Users define preferences and requirements through a web form that restricts 
the set of potential candidate items.  Recommendations are based on a 
ranking of how well the items within this set match the provided preferences.   
Adomavicius et al. [1] call this “flexibility,” and propose a SQL-like 
language as a desired extension in a “next-generation” recommendation 
system.  Such a system might accept queries such as “RECOMMEND Movie 
TO User BASED ON Rating FROM MovieRecommender WHERE 
Movie.Length < 120 AND Movie.Rating < 3 AND User.City = 
Movie.Location.”   Similar techniques are discussed in Chapter AT7 [53]. 

2.3 Suitable domains for collaborative filtering 

One might simply take a user application, implement it with a CF system, and hope 
it will work. However, CF is better known to be effective in domains with certain 
properties. It seems useful to acquaint ourselves with them, and consider whether the 
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user application is a good fit. We group these properties below into data distribution, 
underlying meaning, and data persistence. 

Note that with special consideration, CF can be successfully applied in domains 
that do not have some of the properties below. We simply list them to provoke 
thought and discussion about what domains are easy or hard with collaborative 
filtering. 

Data distribution.  These properties are about the numbers and shape of the data: 
1. There are many items. If there are only a few items to choose from, the user can 

learn about them all without need for computer support. 
2. There are many ratings per item. If there are only a few ratings per item, there 

may not be enough information to provide useful predictions or recommendations. 
3. There are more users rating than items to be recommended. A corollary of the 

previous paragraph is that often you’ll need more users than the number of items 
that you want to be able to capably recommend. More precisely, if there are few 
ratings per user, you’ll need many users. Lots of systems are like this. For example, 
this makes web pages a challenging domain, especially if the system requires 
explicit ratings. Google3, a popular search engine, claims to index 8 billion web 
pages at present, which is more than the number of people in the world, not to 
mention the number who have access to computers. As another example, with one 
million users, a CF system might be able to make recommendations for a hundred 
thousand items, but may only be able to make confident predictions for ten 
thousand or fewer, depending on the distribution of ratings across items. The 
ratings distribution is almost always very skewed: a few items get most of the 
ratings, a long tail of items that get few ratings. Items in this long tail will not be 
confidently predictable. 

4. Users rate multiple items. If a user rates only a single item, this provides some 
information for summary statistics, but no information for relating the items to 
each other.  

Underlying meaning.  These properties are of the underlying meaning of the data: 
1. For each user of the community, there are other users with common needs or 

tastes. CF works because people have needs or tastes in common. If a person has 
tastes so unique that they are not shared by anybody else, then CF cannot provide 
any value. More generally, CF works better when each user can find many other 
users who share their tastes in some fashion.  

2. Item evaluation requires personal taste. In cases where there are objective 
criteria for goodness that can be automatically computed, those criteria may be 
better applied by means other than collaborative filtering, e.g., search algorithms. 
Collaborative filtering allows users with similar tastes to inform each other. CF 
adds substantial value when evaluation of items is largely subjective (e.g., music), 
or when those items have many different objective criteria that need to be 
subjectively weighed against each other (e.g., cars). Sometimes there are objective 
criteria that can help (e.g., only recommend books written in English), but if 
                                                           

3 http://www.google.com/ 
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recommendation can be performed using only objective criteria, then CF is not 
useful. 

3. Items are homogenous. That is to say, by all objective consumption criteria they 
are similar, and they differ only in subjective criteria. Music albums are like this. 
Most are similarly priced, similar to buy, of a similar length. Books or research 
papers are also like this. Items sold at a department store are not like this: some are 
cheap, some very expensive. For example, if you buy a hammer, perhaps you 
should not be recommended a refrigerator.  

Data persistence.  These are properties of how long the data is relevant: 
1. Items persist. Not only does a CF system need a single item to be rated by many 

people, but also requires that people share multiple rated items – that there is 
overlap in the items they rate. If I’ve rated item A and I want a prediction for item 
B, most CF algorithms require multiple users to have rated both A and B. If I’ve 
rated item A and I want recommendations, most CF algorithms require that 
multiple users have rated A and some other items. All of this means that if items 
are only important for a short time, these requirements are hard to meet. For 
example, news stories: many appear per day, and many probably are only 
interesting for a few days. 

2. Taste persists. CF has been most successful in domains where users’ tastes don’t 
change rapidly: e.g., movies, books, and consumer electronics. If tastes change 
frequently or rapidly, then older ratings may be less useful. An example might be 
clothing, where someone’s taste from five years ago may not be relevant. 

 
 

The properties of the preceding sections represent simplifications of the world 
where CF is most easily applied. In fact, applying CF in domains where these 
properties do not hold can provide both interesting applications and interesting 
research areas. For example, one might try to apply CF to non-homogenous items by 
using constrained recommendations, or applying external constraints (called business 
rules in the business world). Likewise, in order to perform system tasks for non-
persistent items, one might try to apply content filtering, which is explored in the next 
section. 

2.4 Comparing collaborative filtering to content-based filtering 

Collaborative filtering uses the assumption that people with similar tastes will rate 
things similarly. Content-based filtering uses the assumption that items with similar 
objective features will be rated similarly. For example, if you liked a web page with 
the words “tomato sauce,” you’ll like another web page with the words “tomato 
sauce.” The challenge is to cleanly extract the features of items that are most 
predictive. One then builds a user profile of features from the items a user has rated, 
and then compares that user profile to item profiles of new items whose features are 
extracted [4].   For more information, refer to Chapter AT5 [43].  

Content-based filtering and collaborative filtering have long been viewed as 
complementary [1]. Content-based filtering can predict relevance for items without 
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ratings (e.g., new items, high-turnover items like news articles, huge item spaces like 
web pages); collaborative filtering needs ratings for an item in order to predict for it. 
On the other hand, content-based filtering needs content to analyze, and content can 
be scarce in some domains (e.g., movies, music, restaurants, and books without text 
reviews available); collaborative filtering does not require content. A content filtering 
model can only be as complex as the content it has access to. For instance, if the 
system only has genre metadata for movies, the model can only incorporate this one 
extremely coarse dimension.  Furthermore, if there is no easy way to automatically 
extract a feature, then content-based filtering cannot consider that feature.  For 
example, while people find the quality of multimedia data (e.g., images, video, or 
audio) for web pages important, it is difficult to automatically extract this information 
[4]. Collaborative filtering allows evaluation of such features, because people are 
doing the evaluating. 

Content-based filtering may over-specialize. Items are recommended that match 
the content features in the user's interest profile or query. Items that do not contain the 
exact features specified in the interest profile may not get recommended even if they 
are similar (e.g., due to synonymy in keyword terms). Researchers generally believe 
collaborative filtering leads to more unexpected or different items that are equally 
valuable. Some people call this property of recommendations novelty or 
serendipity[21]. (See 1.6.2 for a more complete discussion.) However, collaborative 
filtering has also been shown to over-specialize in some cases [57]. 

Content-based filtering (CBF) and collaborative filtering may be manually 
combined by the end-user specifying particular features, essentially constraining 
recommendations to have certain content features [50]. More often they are 
automatically combined, sometimes called a hybrid approach. There are many ways 
to combine them, and no consensus exists among researchers [5, 11, 12, 19, 44]. 
However, such systems generally use the content analysis to identify items that meet 
the immediate need of the user, and use CF to try and capture features like quality that 
are hard to automatically analyze.   For a more detailed look at these techniques, refer 
to Chapter AT6 [9]. 

3 Collaborative Filtering Algorithms: Theory and Practice 

Over the past decade, collaborative filtering algorithms have evolved from research 
algorithms intuitively capturing users’ preferences to algorithms that meet the 
performance demands of large commercial applications.  In this section we explore 
some of the most widely known collaborative filtering algorithms.  Although a good 
deal of theoretical literature describes CF algorithms, little information is available to 
assist practitioners in building CF systems. We highlight not only the theoretical 
definition of these algorithms but their practical challenges and, where applicable, 
suggest techniques to address these challenges.   

Breese et al. [8] described CF algorithms as separable into two classes: memory-
based algorithms that require all ratings, items, and users be stored in memory and 
model-based algorithms that periodically create a summary of ratings patterns offline. 
Pure memory-based models do not scale well for real-world application.  Thus, 
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almost all practical algorithms use some form of pre-computation to reduce run-time 
complexity. As a result, current practical algorithms are either pure model based 
algorithms or are a hybrid of some pre-computation combined with some ratings data 
in memory. 

A more useful organization of collaborative filtering algorithms splits them into 
non-probabilistic algorithms and probabilistic algorithms.  We consider algorithms to 
be probabilistic if they are based on an underlying probabilistic model.  That is, they 
represent probability distributions when computing predicted ratings or ranked 
recommendation lists.  In general, non-probabilistic models are widely used by 
practitioners.  Probabilistic models have been gaining favor, however, particular in 
the machine learning community. 

3.1 Non-probabilistic Algorithms 

The most well-known CF algorithms are nearest neighbor algorithms. We 
introduce the two different classes of nearest neighbor CF algorithms: user-based 
nearest neighbor and item-based nearest neighbor. We also explore more briefly non-
probabilistic algorithms that transform or cluster the ratings space to reduce the 
ratings space dimensionality.  Other commonly cited algorithms not discussed here 
include graph-based algorithms [2], neural networks [7], and rule-mining algorithms 
[20]. 

User-based Nearest Neighbor Algorithms 
Early algorithms generated predictions for users based on ratings from similar 

users. We call these similar users neighbors. If a user n is similar to a user u, we say 
that n is a neighbor of u. User-based algorithms generate a prediction for an item i by 
analyzing ratings for i from users in u’s neighborhood. Naively, we could average all 
neighbors’ ratings for item i. Equation 1 gives the naïve user formulation, where nir  
is neighbor n’s rating for item i. 

 

neighborsnumber of 
uneighborsn

nir
iupred

∑ ⊂= )(),(  

(1) 

 
However, we want to weight ratings from users who are similar to u more heavily. 

Thus, if userSim(u,n) is a measure of the similarity between a target user u and a 
neighbor n, a prediction can be given by equation 2. 

 

∑ ⊂
⋅=

)(
),(),(

uneighborsn
nirnuuserSimiupred  

(2) 
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Unfortunately, if the similarities of the neighbors do not add up to one, this 
prediction will be incorrectly scaled. Accordingly equation 3, normalizes the 
prediction by dividing by the sum of the neighbors’ similarities. 
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Finally, users vary in their use of rating scales. To compensate for ratings scale 

variations, equation 4 average adjusts for users’ mean ratings.. 
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The GroupLens system for Usenet newsgroups, one of the first CF systems, 

defined userSim()¸in equation 4 using the Pearson correlation [46]. The Pearson 
correlation coefficient is calculated by comparing ratings for all items rated by both 
the target user and the neighbor (e.g. corated items).  Equation 5 gives the formula for 
Pearson correlation between user u and neighbor n, where CRu,n. denotes the set of 
corated items between u and n. 
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Pearson correlation ranges from 1.0 for users with perfect agreement to -1.0 for 

perfect disagreement users. Negative correlations are generally believed to not be 
valuable in increasing prediction accuracy [22].  

Practical Challenges of User-based Algorithms 
The user-based nearest neighbor algorithm captures how word-of-mouth 

recommendation sharing works and it can detect complex patterns given enough 
users; however it has practical challenges. 

Ratings data is often sparse, and pairs of users with few coratings are prone to 
skewed correlations. For example, if users share only three corated items, it is not 
uncommon for the ratings to match almost exactly (a similarity score of 1). If such 
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similarities are not adjusted, these skewed neighbors can dominate a user’s 
neighborhood. 

Another problem with Pearson correlation is that it fails to incorporate agreement 
about a movie in the population as a whole. For instance, two users agreement about a 
universally loved movie is much less important than agreement for a controversial 
movie.  Pearson correlation does not capture this distinction. Some user-based 
algorithms account for global item agreement by including weights inversely 
proportional to an item’s popularity when calculating user correlations [8].  

The original user-based algorithm as implemented in GroupLens included all users 
in a CF system in a prediction neighborhood [50]. Later algorithms improved 
accuracy and efficiency by limiting the prediction calculation to a user’s closest k 
neighbors [22]. 

Most importantly, calculating a user’s perfect neighborhood is expensive - 
requiring comparison against all other users. Thus, in a naïve implementation, the 
time and memory requirements of user-based algorithms scale linearly with the 
number of users and ratings. Researches have tried many techniques to reduce 
processing time and memory consumption: 
• Subsampling - In sampling, a subset of users is selected prior to prediction 

computation. Neighborhood computation time remains fixed, and schemes have 
been proposed to intelligently choose neighbors in order to achieve virtually 
identical accuracy. 

• Clustering - Clustering algorithms have been used to quickly locate a user's 
neighbors [33]. In these schemes, a user is compared to groups of users, rather than 
individual users. Clusters of users similar to the target are quickly discovered, and 
nearest neighbors can be selected from the most similar clusters. Both k-means 
clustering [35], and hierarchical divisive [28] and agglomerative clustering [31] 
can segment users into clusters. One challenge in using clustering is that clustering 
schemes use distance functions, such as Pearson correlation to both form the 
clusters and measure distance from a cluster. However, due to missing data, 
distance functions generally do not obey the triangle equality and are not true 
mathematical metrics4. This can lead to unintuitive and unstable clustering. 

Item-based Nearest Neighbor Algorithms 
Item-based nearest neighbor algorithms are the transpose of the user-based 

algorithms. While user-based algorithms generate predictions based on similarities 
between users, item-based algorithms generate predictions based on similarities 
between items [47].  The prediction for an item should be based on a user’s ratings for 
similar items.  Consider the ratings matrix shown in .  Figure 3

Assume we are trying to predict a rating for user #3, item #2 (marked by the X).  
First, we observe that item #2’s ratings are very similar to item #3’s ratings, but not as 
similar to item #1’s ratings.  We now try to predict the rating “X” by building a 
weighted average of user #3’s other ratings (3 for item #1 and 4 for item #3).  Since 

                                                           
4 A distance metric has four properties: it is non-negative, the identity distance is 0, it is 

reflexive, and the triangle equality holds.  The triangle equality is generally most difficult 
requirement to meet. 
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item 2 is similar to item 3, we might guess that the rating for item #3 is more 
important.  We conclude that a good guess is 0.25*3 + 0.75*4 = 3.75. 

 

 

Figure 3: An item-based nearest-neighbor algorithm generates predictions based on similarities 
between items.  Observe that item two is fairly similar to item three and moderately similar to 
item one. 

We have just outlined the item-based prediction algorithm, which we formalize in 
equation 6.  A prediction for a user u and item i is composed of a weighted sum of the 
user u’s ratings for items most similar to i. 
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Note that in equation 6, itemSim() is a measure of item similarity, not user 

similarity. Average correcting is not needed when generating the weighted sum 
because the component ratings are all from the same target user. 

Several variations exist for calculating the similarity for a pair of items (i, j). 
Adjusted-cosine similarity, the most popular (and believed to be most accurate) 
similarity metric, is computed using all users who have rated both item i and j.  
Equation 7 gives the formula for adjusted-cosine similarity, where RBi,j denotes the 
set of users who have rated both item i and item j.  
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The only difference from Pearson correlation is that average adjusting is performed 

with respect to the user, not the item. As in the user Pearson correlation, the 
correlation value ranges from –1.0 to 1.0. 
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There is evidence that item-based nearest neighbor algorithms are more accurate in 
predicting ratings than their user-based counterparts [47]. 

Practical Challenges in Item-based Algorithms 
Theoretically, the size of the model could be as large as the square of the number 

of items.  In practice, we can substantially reduce this size by only storing correlations 
for item pairs with more than k coratings. Sarwar et al. prune the model even further 
by only retaining the top n correlations for each item.  Such modifications yield item-
based algorithms that are relatively efficient in both memory usage and CPU 
performance. Note that pruning many of the correlations means that it may be more 
difficult to make a prediction for a given target item and user, since the items 
correlated with the user’s ratings may not contain the target item. 

As in the user algorithm, item pairs with few coratings can lead to skewed 
correlations and care must be exercised to not let skewed correlations dominate a 
prediction.  

Non-probabilistic Dimensionality Reduction Algorithms 
Large CF applications may support millions of users and items [33]. Other 

domains may have such a sparsity of ratings that there are few coratings.  Several 
algorithms reduce domain complexity by mapping the item space to a smaller number 
of underlying “dimensions.”  Intuitively, these dimensions might represent the latent 
topics or tastes present in those items. The smaller “latent” dimensions reduce run-
time performance needs and lead to larger numbers of co-rated dimensions. These 
techniques define a mapping between a user's ratings and their underlying tastes. An 
item’s prediction can then be generated based on a user’s underlying tastes. Mapping 
functions generally consist of simple vector operations, and predictions for an item 
can be calculated in constant time. Vector-based techniques for extracting underlying 
dimensions include support vector decomposition [48], principal component analysis 
[18], and factor analysis [10]. 

Practical Challenges in Dimensionality Reduction Algorithms 
Mathematical dimensionality reduction techniques such as singular value 

decomposition [48] and principal component analysis [18] require an extremely 
expensive offline computation step to generate the latent dimensional space. Practical 
implementation of these techniques generally requires the use of heuristic methods for 
incrementally updating the latent dimensional space without having to entirely 
recompute – such as the folding-in technique for singular value decomposition. 
However, the primary challenge to utilizing such techniques is the mathematical 
complexity – which can lead to challenges debugging and maintaining software 
utilizing those techniques. While there is some evidence that these techniques can 
improve accuracy in predicting ratings [49], for the most part, the improvement has 
not been substantial enough to overcome the practical challenges of complexity.  

Association Rule Mining 
Association mining techniques build models based on commonly occurring 

patterns in the ratings matrix [20, 32].  For example, we may observe that users who 
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rated item 1 highly often rate item 2 highly.  A particular rule is represented by an 
input condition (e.g. item 1 rated highly) and a result condition (e.g. item 2 rated 
highly).  The support of a rule represents the fraction of users who have rated both the 
input and result conditions, and the accuracy of a rule is the fraction of users with the 
input condition that exhibit the result condition. 

In order to generate a predicted rating for a user u and item i, we first select the 
rules with a result condition of item i that only include items rated by user u.  We then 
use a heuristic to translate the support, accuracy, and ratings for input conditions into 
a predicted rating.  

For more information, refer to Chapter MT3 [39]. 

Practical Challenges in Association Rule Mining 
Naïve association rules can treat each rating value as independent.  For example, a 

rating of 1 for a particular item is different than a rating of 2, even though both may 
be interpreted as the user indicating dissatisfaction with the item.  This independence 
can dramatically increase the sparsity of an already sparse space.  To overcome this, 
implementers generally place “similar” ratings into bins using one of several 
strategies: 
• High and low ratings bins – Divide ratings into two bins; those above and those 

below a user’s average rating. 
• High ratings – Only consider ratings above a user’s average when building rules. 
• All ratings – Treat all ratings as identical when building rules. 

A general drawback in association mining is that, since rating bins are treated 
discretely, we lose any notion of the numeric relationship among ratings.  Although 
this relationship is theoretically meaningful, in practice it seems to have little impact. 

Association rule mining in non-CF domains often looks for input patterns 
consisting of multiple items (e.g. if the user rated items 1 and 2 highly, they will rate 
item 3 highly).  While these patterns may be useful, mining the patterns is too slow in 
CF domains due to the extremely high dimensionality. 

3.2 Probabilistic Algorithms  

Probabilistic CF algorithms explicitly represent probability distributions when 
computing predicted ratings or ranked recommendation lists. In general, probabilistic 
algorithms try to leverage well-understood formalisms of probability. 

Most probabilistic CF algorithms calculate the probability that, given a user u and a 
rated item i, the user assigned the item a rating of r: p(r|u,i).  We calculate a predicted 
rating based on either the most probable rating value or the expected value of r.  
Equation 8 gives the formula for user u’s expected rating for item i. 
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The most popular probabilistic framework involves Bayesian-network models that 
derive probabilistic dependencies among users or items.  Some of the earliest 
probabilistic CF algorithms were proposed by Breese et al., who describe a method 
for deriving and applying Bayesian networks using decision trees to compactly 
represent probability tables [8].  A separate tree is constructed for every 
recommendable item.  The branch chosen at a node in the tree is dependent on the 
user's rating (or lack of rating) for a particular item.  Nodes in the tree store a 
probability vector for user's ratings of the predicted item.  In theory, non-naïve 
Bayesian networks improve upon standard item-based algorithms by modeling 
dependencies between input items used to calculate a prediction. However for multi-
valued ratings, there has been no published evidence of Bayesian networks 
consistently outperforming item-based nearest neighbor algorithms.  

There has also been a good amount of work on developing probabilistic 
clustering/dimensionality reduction techniques. Probabilistic dimension reduction 
techniques introduce a hidden variable p(z|u) that represents the probability a user 
belongs to the hidden class z.  Equation 9 gives the formula for calculating the 
probability of user u rating item i value r. 
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The corresponding prediction is the expectation of the rating value (equation 10). 
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Hoffman presents an expectation maximization (EM) algorithm for CF that 

estimates latent classes z with Gaussian probability distributions [26]. Clustering 
algorithms also have been used to estimate latent classes [56]. 

One advantage of probabilistic algorithms is that they can produce a probability 
distribution across possible rating values – information that captures the likelihood of 
each possible rating value. From this information, not only can you compute the most 
probable rating, you can also compute a likelihood of that rating being correct – thus 
capturing the algorithm’s confidence. There has been a recent attempt to create a 
hybrid approach that utilizes the nearest neighbor algorithm, but represents ratings as 
discretized probability distributions rather than a point rating [36]. 

3.3 Over-arching Practical Concerns 

Regardless of choice of algorithm, real-world CF systems need to address several 
problems that are generally not covered in research literature. 
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Adjust for few ratings 
Items and users with few ratings can inappropriately bias CF results. Algorithms 

may take steps to adjust for users, items, and user and item pairs with few co-ratings 
(we’ll generally call these rarely-rated entities). We will compare techniques for 
adjusting for rarely-rated entities, using a user-based algorithm as an example: 
1. Discard rarely-rated entities – Algorithms often only incorporate data with greater 

than k ratings. In a user-based algorithm, for example, we would discard neighbors 
with fewer than k co-ratings with the target user. Although this is a simple and 
clean approach it can decrease the coverage of the CF system. 

2. Adjust calculations for rarely-rated entities– This technique adjusts calculations 
for rarely-rated entities by pulling them closer to an expected mean. For instance, 
Pearson similarities for users with few co-ratings may be adjusted closer to 0. CF 
systems often make the adjustment amount inversely proportional to the number of 
ratings. Although adjustment can be effective, tuning adjustment parameters can be 
difficult and unstable. 

3. Incorporate a prior belief – We can avoid skew by incorporating artificial data 
points that match an expected distribution. For example, we may believe that users 
ratings will generally match a probability distribution p. We can incorporate this 
prior belief into user correlation calculation by including k artificial co-rated items 
whose ratings are independently drawn from p. 

Prediction vs. Recommendation  
Prediction and Recommendation tasks place different requirements on a CF 

system. To recommend items, a system must be prepared to know about a subset of 
items, but perhaps not all. Some algorithms save memory and computation time by 
taking advantage of this [33, 47]. To provide predictions for a particular item, a 
system must store information about every item, even rarely rated ones. Algorithms 
that are required to present personalized predictions for many items often have larger 
memory requirements. 

On the other hand, recommendation tasks require calculation of predictions for 
many (if not all) items. A single prediction request can therefore afford a more 
expensive prediction calculation than a recommendation request. 

Confidence Metrics 
CF systems can supply a confidence metric that indicates the support for a 

particular prediction. Applications may choose to not display predictions with 
confidence measures below a certain threshold. 

Confidence measures can also be used when selecting items for recommendation. 
CF algorithms generally choose to recommend those items with highest predicted 
ratings. Some CF systems may choose to tradeoff items with high predictions and low 
confidence for items with less-high predictions and high confidence. 

Confidence measures are specific to each CF algorithm. Probabilistic algorithms 
may be able to use their computed probability distributions to estimate confidence. 
User-based algorithms often use confidence measures that incorporate the agreement 
for an item in a user’s neighborhood, and the number of corated items between 
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neighbors and the user. Item-based algorithms may measure the number of ratings for 
correlated pairs of items contributing to a prediction.  

4 Acquiring Ratings: Design Tradeoffs 

Ratings data from users on items are what enable collaborative filtering. In this 
section we will discuss in more depth the different kinds of ratings data that can be 
used and key concepts and decisions involved with acquiring ratings for collaborative 
filtering systems.  

4.1 Explicit versus Implicit Ratings: Tradeoff 

Explicit ratings provided by users provide the most accurate description of a user’s 
preference for an item with the least amount of data. However, because explicit 
ratings require additional work from the user, it can be challenging to collect ratings – 
particularly when creating a new CF service. On the other hand, implicit ratings – 
observations of user behavior from which preference can be inferred – can be 
collected with little or no cost to the user, but ratings inference may be imprecise. As 
an example, consider using “time spent reading information about a product” as an 
implicit rating for that product. Intuitively, if a user spends a lot of time reading about 
a product, we might conclude that they would be interested in purchasing that 
product. However, there are reasons that this inference could be inaccurate – the user 
may have taken a coffee break just after opening the product info page, or the user 
may have concluded that the product was inappropriate after spending the time to read 
about it. Thus if implicit ratings are used, there is more uncertainty in the 
computation. Other examples of implicit ratings are discussed in Oard and Kim [40]. 

The more ratings that you have, the more uncertainty in the ratings you can handle. 
Uncertainty in rating values, including implicit ones is handled by aggregating ratings 
– collecting multiple observations of variables that are predictive of a rating and 
combining them into a single estimated rating – either by voting [15] or averaging 
[46, 52]. Thus if you are able to collect large numbers of ratings, then the errors 
introduced by uncertainty of implicit ratings can be canceled out by aggregation. In 
such a situation, you may be able to build a very successful CF system without 
explicit ratings. Good examples from the music domain are AudioScrobbler5 and 
MusicStrands6, which track every single song you play. With music, after enough 
ratings (plays) have accumulated, these implicit ratings may represent user taste much 
better than small explicit ratings scales. A five point rating scale only allows you to 
group a user’s rated items into five ranks – the CF system cannot distinguish 
difference in taste between items with the same rating value. When using the implicit 
play count, user may play individual songs thousands of times, and since each song is 
likely to be played a different number of times, a more complete ranking of items a 

                                                           
5 AudioScrobbler is owned by Last.fm which can be found at http://www.last/fm/index.php 
6 http://www.musicstrands.com/ 
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user likes can be created. If you cannot capture large numbers of implicit ratings, then 
you will most likely need some form of explicit rating.  

4.2 The Challenge of Collecting Explicit Ratings 

Explicit ratings require dedicated attention of the user. Early researchers believed 
that users would not invest the time rating items required for CF systems. From an 
economic perspective it would appear that if incremental recommendations are free, 
then everybody would wait for others to identify what was good and there would be 
insufficient ratings [3]. However, during the past decade, experience has 
demonstrated that collecting explicit ratings is not as challenging as previously 
thought. 

The first reason is that – in order to succeed – a CF system doesn’t need lots of 
ratings from all people. Instead you just need a relatively small number of “early 
adopters” who rate frequently and continuously. These early adopters provide 
sufficient information to generate recommendations for the remaining users of the 
system. The remaining users must each then just provide a limited number of ratings 
in order for the system to learn their preferences. 

The second reason that collecting explicit ratings is easier than previously expected 
is that users appear to gain many benefits from rating other than higher quality 
recommendations. Although no conclusive studies have been done, researchers and 
practitioners have proposed that users gain the following rewards from rating: 

 
• An increased feeling of having contributed to advancing a community 
• Gratification from having one’s opinion’s voiced and valued 
• An ability to use the CF system as an extension of their memory of what they like 

and dislike.  
 
Maintainers of CF systems sometimes use incentives to encourage users to provide 

more explicit ratings.  For example, sites may exchange user ratings for “site points.”  
These site points can be exchanged for rewards (e.g. t-shirts and hats) or privileges 
(e.g. the right to view privileged content).  Incentives can increase the number of 
ratings provided by users, but users who rate only when provided with incentives are 
often price sensitive, and will move to a more rewarding opportunity if the reward to 
rate drops or the reward to participate in another community is increased.  

4.3 Rating Scales 

Another significant design decision involves choosing the explicit rating scale. The 
finer grained the scale, the more information you will have regarding each user’s 
preference. Finer grained scales require more complex user interfaces.  The most 
common types of ratings are shown in . Table 2

At some point, increasing the precision of the rating scale further may fail to add 
value. If a very precise scale is selected, such as 1-100, you are unlikely to get a user 
to give the same rating for an item if you ask them at different points in time – thus 
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you increase the uncertainty in the rating. Perhaps the most important consideration is 
the desires of the user population. Users may feel that they cannot fully describe their 
tastes with few possible rating values. In MovieLens, users were frustrated that they 
were not able to give ratings as precise as the systems predictions of their ratings – 
predicted ratings were to the closest half point while user ratings were integers [13]. 

Table 2: Most common explicit rating scales. 

Rating Scale Description 
Unary Good or “don’t know” 
Binary Good or Bad 
Integer “Likert”-like  Integers: 1-5, 1-7, or 1-10 

4.4 Cold Start Issues 

The “cold-start” problem describes situations in which a recommender is unable to 
make meaningful recommendations due to an initial lack of ratings.  This problem can 
significantly degrade CF performance.  It can occur under three scenarios. 

New User. When a user first registers with a CF service, they have no ratings on 
record. Thus no personalized predictions can be given. For example, a new user to 
MovieLens has no ratings in the system, so a neighborhood of similar users can not be 
calculated.  This may be solved in several ways. For example, by a) having the user 
rate some initial items before they can use the service; b) displaying non-personalized 
recommendations (population averages) until the user has rated enough; c) asking the 
user to describe their taste in aggregate, e.g., “I like science fiction movies”; d) asking 
the user for demographic information, or e) using ratings of other users with similar 
demographics as recommendations.  

New Item. When a new item is added to a CF system, it has no ratings, so it will 
not be recommended. For example, MovieLens is unable to recommend new 
Hollywood releases until someone has entered an initial rating.  Unfortunately, in 
many domains, users are less likely to rate items that are not recommended to them. 
Generally this is not a show-stopper, because most good items can be discovered 
through means other than the CF system and will get eventually rated. Users also tend 
to be forgiving of systems that don’t recommend obscure items. However, in domains 
where there may be many “sleepers” – unrated items that are very good, several 
techniques can be used, including: a) recommending items through non-CF 
techniques – content analysis or metadata, and b) randomly selecting items with few 
or no ratings and asking users to rate those items.   

New Community. The biggest cold-start problem is bootstrapping a new 
community. If a new service’s value is in its personalized CF recommendations, then 
without ratings it may not have sufficient differentiating value – thus not retain users 
long enough to build up ratings. The most common solution is to provide rating 
incentives to a small “bootstrap” subset of the community, before inviting the entire 
community to use the service. Other approaches are to maintain users’ interest 
through alternate services, initially generate recommendations using non-CF 
approaches, or to start with a set of ratings from another source outside the 
community.   
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5 Evaluation  

Evaluation measures how well a collaborative filtering system is meeting its goals, 
either in absolute terms or in relation to alternative CF systems. Unfortunately, there 
is no well-accepted metric that can evaluate all-important criteria related to the 
performance of a CF system. The appropriate metric to choose may depend on the 
type of items being recommended, the user tasks supported by the CF system, and any 
external goals that the service providers may have (e.g., promotional or inventory 
depletion). An in-depth discussion of evaluation considerations of collaboration 
filtering systems can be found in Herlocker et al. [21]. In this section, we first discuss 
accuracy, which is generally considered the most important criteria to evaluate, and 
then discuss more briefly some of the other criteria that may be important to evaluate 
and their associated metrics. 

5.1 Accuracy 

The most prominent evaluation metrics in the research literature measure the 
accuracy of the system's predictions. Accuracy can either be measured as the 
magnitude of error between the predicted rating and the true rating, or the magnitude 
of error between the predicted ranking and the “true” ranking. Predictive accuracy is 
the ability of a collaborative filtering system to predict a user's rating for an item. The 
standard method for computing predictive accuracy is mean absolute error (MAE) – 
the average absolute difference between the predicted rating and the actual rating 
given by a user. The advantage of MAE is that it is simple, well understood, and 
traditional significance tests can be applied to it. Furthermore, MAE seems to 
intuitively capture the quality of a CF system – we want predictions to be as close as 
possible to the true ratings. However, MAE has proven to be an unreliable measure of 
a ranked recommendation list [36]. Users perceive errors at the top of a 
recommendation list as much more costly than similar errors at the bottom of lists. 
MAE does not differentiate between errors at the top and errors at the bottom of lists. 

Rank accuracy metrics attempt to compute the utility of a recommendation list to a 
user. Common rank accuracy metrics include precision [36, 47] and half-life utility 
[8]. Precision is the percentage of items in a recommendation list that the user would 
rate as useful. In CF, it is often computed at varying lengths of recommendation list 
(1, 3, 5, etc). The half-life utility metric computes a value for a ranked list that is 
intended to capture percentage of the maximum utility achieved by the ranked list in 
question. The maximum utility is achieved if all of the items rated as useful appear 
above all the items rated as not useful. In the half-life utility metric, mistakes at the 
top of the ranked list are weighted exponentially greater than mistakes further down 
the list.  

If the user interface of the collaborative filtering system primary provides ranked 
lists of “best-bet” recommendations, then the accuracy of the system should be 
evaluated with a rank accuracy metric. If the system displays predictions of ratings 
directly to the user, then it is important to evaluate the system with a predictive 
accuracy metric. In many cases, it may make sense to use both.  
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5.2 Beyond Accuracy 

While many of the published evaluations of CF systems measure accuracy, 
researchers and practitioners have come to learn that accuracy is not the only criteria 
of interest, and in some cases, may not even be the most important. Several other 
evaluation criteria have been explored.  

 
• Novelty is the ability of a CF system to recommend items that the user was not 

already aware of.  While non-novel recommendations can still be valuable, for 
many applications novelty is one of the most valued characteristics of the CF 
system’s recommendations. Even stronger than novelty is the idea of serendipity, 
where users are given recommendations for items that they would not have seen 
given their existing channels of discovery. To illustrate the distinction, consider a 
news article recommender. A traditional content-based personalization system may 
generate recommendations that are not novel, because if I say I like a particular 
news article, then it will recommend other news articles with similar text, including 
stories about the exact same news event. A system tuned for novelty will work 
hard to not recommend news stories to me of which I am already aware. A 
serendipitous system would recommend to me news articles about topics that I 
have never read about before. Researchers have studied how to adjust algorithms to 
promote serendipity and novelty [47], but measuring novelty is challenging 
because it requires live user studies where participants indicate if a 
recommendation was novel.  

• Coverage is the percentage of the items known to the CF system for which the CF 
system can generate predictions. It is also possible to compute variants such as the 
percentage of items that have the potential of being recommended to users, as 
performance optimizations in recommendations may prevent certain items from 
ever being recommended [49]. 

• Learning Rate measures how quickly the CF system becomes an effective 
predictor of taste as data begins to arrive. Generally these are computed per-user, 
measuring the number of ratings that a user has to provide before they are getting 
high quality personalized predictions [51]. 

• Confidence describes a CF system’s ability to evaluate the likely quality of its 
predictions. Most CF systems generate rankings based on the most probable 
predicted rating. A CF system that can accurately compute its confidence in a 
prediction has the ability to limit recommendations to high confidence ones, 
leading to a tradeoff of fewer false positives in return for decreased coverage and 
possibly decreased novelty. If confidence in predictions can be computed, it can be 
displayed to users to help them decide if the risk-return ratio is appropriate [23].  

• User satisfaction metrics. The metrics described above are only a sample of 
possible evaluation metrics. In particular there are many more metrics that can be 
applied if researchers have the ability to present a system to users, and measure 
how users perceive the system.  This can be accomplished either by surveying the 
users or measuring retention and use statistics. Good examples include Swearingen 
and Sinha [54] and Dahlen et al. [14]. 
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• Site performance metrics.  In addition to the more mathematical and often “offline” 
metrics described above, websites may choose to use fairly simple site analysis 
metrics when adding a recommender to a site or modifying the design of an 
existing recommender.  Such metrics might include tracking an increase in items 
purchased or downloaded, an increase in overall user revenue, or an increase in 
overall user retention.  While such trends are easy to track and measure, they may 
be difficult to correlate to specific changes to an active website. 

 
In conclusion, it is best to select a suite of metrics that will evaluate the criteria that 

are most important for the successful operation of a particular CF system. For 
example, if you are using CF to generate a top-5 recommendations list for your web 
site, then you might compute precision at top-5, top-3, and top-1. Furthermore, if the 
goal of your web site recommendations is to introduce your users to new things, then 
you might also do some user studies where you shown recommendation lists to users 
and ask them to rate the novelty of those recommendations. Predictive accuracy 
metrics like MAE may not be so useful if you are not displaying predicted rating 
values to users. 

6  Rich Interfaces & Social Navigation 

Early user interfaces for CF systems simply provided ranked list of 
recommendations, potentially with predicted ratings. The recommendation engine 
was a “black-box” – there was no transparency into how a prediction was computed 
[14, 17, 24, 46]. A critical trend in recent years is the exploration of user interfaces 
that enable more rich interaction with the underlying data of a collaborative filtering 
system, and CF systems that expose more information about the users from whom 
recommendations are (or can be) generated. In this section, we describe explanation 
and social navigation – two of these trends, and why they are so important.  

One limitation of the black box approach was that the user interfaces to the CF 
systems were unable to communicate to the user when predictions were more or less 
risky than normal. Yet the need for this was common – when users were new or when 
items were new, predictions are more risky because there is less data on which to base 
inferences. More generally, the black box approach does not expose the reasoning or 
the data used in a recommendation. As a result, the user has little data on which to 
base decisions such as a) should they trust the recommendation process, b) is the 
current recommendation highly confident – either through trusted sources or 
overwhelming evidence, or c) is this recommendation appropriate for the user’s 
immediate context or need.  

6.1 Explanation 

Initial work on the use of explanation in CF recommendations was promising [23], 
and has more recently been adopted commercially by Amazon.com, which has a link 
“why was I recommended this item” – the link will list previous ratings or purchases 
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that you made that strongly influenced the recommendation at hand ( ).  
Explanations of CF recommender systems are challenging because the underlying 
predictive models are complex aggregations of large quantities of data, often with 
significant probabilistic reasoning. Yet initial research suggests that users are 
overwhelmed if they are presented with too much data within an explanation [23]. 
While the current work on recommendations is far from conclusive, promising 
approaches that have been explored include: showing histograms of a user’s 
neighbors’ ratings for the recommended item and showing key items that the user 
rated that influenced the recommendation.  

Figure 4

Figure 4 : Amazon.com provides customers with list of previous purchases and ratings that 
strongly influenced a particular recommendation. 

 

 

 
There is also a correlation between persuading a user that the recommendation is 

correct and explaining the recommendation to them. For many contexts, it may be 
sufficient to supply data from other sources not used in the recommendation that 
confirms the recommendations – such as reviews from critics. This may help persuade 
the user that the recommendation is good, yet reveals nothing about the reasoning 
behind the recommendations.  
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6.2 Social Navigation 

Most of the CF systems we have discussed so far have been systems that use the 
group as a whole to help each individual user.  Such systems tend to ignore the 
importance of the groups themselves. Social navigation systems encompass a variety 
of techniques that help people work together to help each other by making the 
aggregate behavior of the community visible.  Users can employ this behavior to find 
their way through often crowded web spaces.   

Höök et al. consider one type of social navigation system in which each visitor to a 
web site leaves “footprints” – telltale signs regarding what information the visitor 
considered and how frequently or in-depth.  These footprints help other users find 
their way more readily through that same space [27]. This type of visualization has 
been called “read-wear” or “edit-wear” [25]. Early users leave footprints that help 
later users make sense of the wealth of alternatives available to them. Later users 
benefit from the footprint, because they are able to direct their attention to the parts of 
the site that are most valuable to them.  As information spaces become more crowded 
with users it may become important to have systems that show us only those 
footprints that are most useful to us.  

While these early CF and social navigation systems were clearly “collaborative,” 
they almost always have provided “implicit” collaboration.  Users benefited from the 
ratings and footprints left by other users in an anonymous and virtually untraceable 
manner.   Some second generation collaborative filtering services have begun to 
experiment with allowing more “explicit” collaboration by exposing more of the 
identity of the other members of the community whose ratings are being used to 
generate a user’s recommendations.  

One example is epinions.com, which is a site designed to help users make 
purchasing decisions. On epinions.com, users rate and review products that they have 
purchased and these reviews are made available as recommendations to others. When 
a user views a recommendation/review, she can also look at the profile of the user 
who made the review, seeing information such as what other reviews they have 
written and how other people have responded to those reviews.  She can explicitly 
state that she “trusts” a user as a reviewer.  She can also “block” a reviewer, so that 
user’s ratings/reviews are not shown.  

Interfaces like epinions.com attempt to mimic more accurately the social process of 
word-of-mouth recommendations.  A user could choose those people whose tastes he 
agreed with to provide recommendations, yet could choose different people to trust 
for different contexts. He could base his trust of another user on his observations of 
their activity within the community (their ratings) or on other’s expressed opinions of 
their value. As users began to rate each other, explicit social networks could be 
expressed – “webs of trust.” Users could then navigate these social networks in their 
search for items or products that would meet their need.  

CF web services that offered this social navigation often evolved to be much more 
than recommendation sites. Particularly interesting was that the CF aspects of the 
system would bring together communities of common interest that would then engage 
in direct social interaction through discussion groups, chat rooms, or email. In theory, 
this direct social connection is the ultimate rich interface for recommendation. The CF 
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software enables a user to navigate a potentially immense social network and find 
exactly those people who most closely share their tastes.  

For a more detailed look at this topic, refer to Chapter CH1 [16] 

7 Ongoing Challenges to Collaborative Filtering 

7.1  Privacy and Security 

In order to provide personalized information to users, CF systems need to know 
things about those users.  In fact, the more the system knows about a user, the better 
predictions it can provide to that user.  With this increased information stored by a 
system often comes an increased concern on the part of the user regarding what 
information is collected, where and how it is stored, and how it is used.  In centralized 
CF architectures, a single repository stores all user ratings. If the central server 
becomes compromised or corrupt, a user's anonymity can be destroyed. Users must 
trust that the CF provider will not use their preferences except for providing ratings 
and recommendations. 

Distributed architectures may deploy ratings or models to each user, risking 
exposure of information to every peer [46]. To protect against this, researchers have 
developed security techniques building on encryption and shared keys [10]. In these 
schemes, a user can encrypt their ratings, and peers can tally encrypted ratings. Once 
ratings are totaled, distributed agents use shared keys to decrypt the rating tallies, 
without being able to see the original ratings. 

Even systems that maintain the security of their users' ratings can be exploited to 
reveal personal information, particularly for users with unusual tastes. Ramakrishnan 
et al [45] use a graph-theoretic framework to explore these concerns. They found that 
“weak ties” (users who connect clusters of different tastes) are most susceptible to 
exploitation. Unfortunately, it is often these esoteric users that are most valuable to 
recommender systems, because they can provide users with unexpectedly novel 
recommendations.  For more on the issue of privacy, see Chapter CH3 [29]. 

7.2  Trust 

Recommender systems may break trust when malicious users give ratings that are 
not representative of their true preferences. What happens to a CF system if one or 
more users decide to “attack” an item by purposefully lowering their rating(s) of the 
item?  What happens if a company bombards a recommender with inflated ratings of 
its own products (e.g. Sony using quotes from made-up critics to promote its films 
[6])? There have been many examples of these “shilling” attacks. O’Mahoney et al 
[42] showed that users could, in fact, artificially raise and lower predicting ratings. 
User-based algorithms are more susceptible to shilling than item-algorithms, as are 
new or rarely rated items. Unfortunately, this vulnerability remains a significant 
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challenge to collaborative filtering systems.  Methods researchers use to detect attacks 
are not even sensitive enough to detect harsh attacks [29]. 

While these shilling attacks may seem slightly benign on the surface, further 
research has suggested that their effect may be more influential than originally feared.  
Cosley et al. demonstrated that users may not only perceive biases in ratings, but also 
adjust their own ratings to match recommenders’ biases [13]. This observation 
indicates that shilling effects may be compounded as having viewed predictions based 
on the biased ratings potentially skews later users’ ratings. More research is needed to 
understand how to identify attacks and protect systems from them. 

8 Open Questions 

This section discusses some open questions in the field of collaborative filtering. 
They are grouped into algorithmic questions (with an emphasis on temporal 
questions), and questions of broader access to collaborative filtering systems.  

8.1 Algorithmic questions 

Evaluation metrics. There have been many metrics of recommendation quality 
proposed [21]. Which ones capture what people perceive as good quality? Which ones 
are important? 

Predicting well and recommending well at the same time. As we discussed in 
section 2.2, efficient algorithms for recommendation may choose not to produce 
predicted values at all, or may choose to only store a small amount of information 
necessary to recommend some items. However, predicting a rating for a given user 
and item is an appealing application. Are there efficient, scalable algorithms that both 
recommend and predict well? 

Tagging. Social systems such as flickr and del.icio.us, which allow users to tag 
things (photos and websites, respectively) with keywords, are increasing in popularity 
and have captured the imagination of many people. These are collaborative filtering 
systems surely, though without much automation as yet. Other tagging systems have 
been around for years (e.g., IMDB’s movie “keywords”). There are many interesting 
research questions. How can collaborative filtering algorithms be applied to tags? Can 
tags be used in conjunction naturally with ratings? 

Tags without ratings are missing information. Tagging a movie “high-speed car 
chase” does not indicate whether that was a good thing or not. Is there a hybrid 
solution, where tags have associated explicit or inferred ratings? 

8.2 Temporal questions 

These questions are about the behavior of a collaborative filtering system over 
time.  
1. Item lifecycle. 

a) When does an item have enough ratings to be accurately recommendable? 
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b) When is an item a rising trend, falling trend, or a fad? Are many items are 
like that? 

2. User lifecycle. 
a) When does a user have enough ratings to get good recommendations? 
b) Can one identify the items for which it is possible to give good 

recommendations for a given user? 
c) At what point do additional user ratings fail to improve his recommendations 

because the system has built a sufficiently accurate model (diminishing 
returns)?  Can users detect this point and do they change the way they use 
the system? 

d) Are more ratings useful again as items are added? 
e) How do old ratings affect a user’s recommendations, versus new ratings? Do 

user tastes shift over time? Can we detect it? 
3. Ratings database lifecycle. 

a) When is a rating “stale” (i.e., no longer reflective of the opinion of the rater)? 
b) When does a database have enough ratings to give good recommendations? 
c) Can one identify which items are likely recommendable? 
d) How does the transition from not enough ratings to enough ratings look? Is 

there a critical threshold? 
e) Is it useful to expire (not use) ratings for the purposes of recommendations? 

8.3 Broader Access 

Collaborative filtering systems have been around for at least a decade. However, 
for the most part only large companies or research labs actually run them, because 
they require unusual expertise, considerable resources, or both. Many more people 
might be interested in giving opinions to each other in an automated system if 
appropriate infrastructure were present, and the range of items, domains, and opinions 
might be far more diverse. What are other effective ways to access or deliver the 
power of collaborative filtering? 

User interfaces 
The most well-known collaborative filtering systems are centralized web-based 

applications with explicit ratings. Other interfaces are emerging that bring the 
technology closer to users, who are more likely to use it if it is easy. Wikipedia  and 
SourceForge list several applications with embedded collaborative filtering. For 
example, Audioscrobbler offers a plug-in to several music players (Winamp, 
Windows Media Player, iTunes, and several others) that collects data about which 
songs are played, sends it to a central web site, and produces music recommendations 
(Figure .)  5

Other systems have been proposed, but are not yet well studied. Miller investigates 
algorithms for portable, user-controlled, accurate recommendations on palmtop-sized 
devices [38]. These allow the users to remain anonymous and autonomous. 
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Figure 5 : After installing an Audioscrobbler plugin for your media player (eg: Winamp,) 
information about every song you listen to on your computer is sent to Last.fm to update your 
profile. 

Libraries or toolkits 
Once well understood, a technology can be bundled into a library or toolkit7 

available for embedding into an application.  In addition to companies that do this 
commercially, there are several free, open-source alternatives8.  However, there are no 
CF toolkits or libraries that have wide usage, as Apache and Internet Information 
Server (IIS) do in the web server space.  Even though many designers see clear value 
in recommenders, and there seems to be increasing numbers of them on the web, few 
tool kits or libraries are gaining wide use. Why is this? What is the right functionality 
and interface for a toolkit suitable for a wide audience? 

Data 
Increased public availability of ratings datasets will enable more effective research 

into collaborative filtering, will allow practitioners to prototype CF system, as well as 
solve the “cold-start” problem for communities. Organizations often keep that data 
private, whether for competitive advantage or privacy concerns. Some are starting to 
open up their data. The EachMovie movie rating dataset was the most popular CF 

                                                           
7 For more information on collaborative filtering toolkits, consult http://en.wikipedia.org/wiki/ 

Collaborative_filtering#Software_libraries. 
 
8 Open source toolkits include CoFe (http://eecs.oregonstate.edu/iis/CoFE/), MultiLens 

(http://www.cs.luther.edu/~bmiller/dynahome.php?page=multilens), and Taste 
(http://taste.sourceforge.net/). 
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dataset until it was retired in October 2004. Remaining freely available datasets 
include MovieLens, Jester, and Book Crossing9.  

9 Summary 

Collaborative filtering is one of the core technologies that will power the adaptive 
web. Content-based personalization can be effective in limited circumstances, but for 
the most part, it will likely be decades or longer before our hardware and software 
technology can begin to automatically recognize the subtleties of information that are 
important to people – particularly aspects of aesthetic taste. Until then, in order to 
filter information based on such complex dimensions, we need to include people in 
the loop, who analyze the information and condense their opinions into data that can 
be easily processed by software – ratings. In this chapter, we have attempted to 
provide a snapshot of the current understanding of collaborative filtering systems and 
methods. By necessity, as masses of information become ubiquitously available, 
collaborative filtering will also become ubiquitous. In the process, we will continue to 
gain a deeper understanding of the dynamics of collaborative filtering. 
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