
Don’t Drive on the 
Railroad Tracks

Eugene Wallingford
University of Northern Iowa

November 17, 2010

Thursday, November 18, 2010



In the small, you know this.
It is no big deal.

In the large, this is different.
It changes how you think
about problems and data.

Two Claims

Thursday, November 18, 2010



you know this

Thursday, November 18, 2010



def addSalesTax( price )
    price * 1.07
end

Thursday, November 18, 2010



def addSalesTax( price )
    price = price * 1.07
end

Thursday, November 18, 2010



def addSalesTax( price )
    price = price * 1.07
end X

Thursday, November 18, 2010



def addSalesTax( price )
    tax   = price * 0.07
    price = price + tax
end

Thursday, November 18, 2010



def addSalesTax( price )
    tax   = price * 0.07
    price = price + tax
end X

Thursday, November 18, 2010



side effects

Thursday, November 18, 2010



side effectsX
Thursday, November 18, 2010



Thursday, November 18, 2010



Thursday, November 18, 2010



Thursday, November 18, 2010



def addSalesTax( price )
    price * 1.07
end

Thursday, November 18, 2010



sort -m access01-ips access02-ips  \
     | uniq -d                     \
     | wc -l

Thursday, November 18, 2010



wc(“-l”,
   uniq(“-d”,
        sort(“-m”,
             access01-ips,
             access02-ips)))

Thursday, November 18, 2010



[ 1 , 2 , 3 , 4 ]
["a","b","c","d"]

Thursday, November 18, 2010



[ 1 , 2 , 3 , 4 ]
["a","b","c","d"]

Thursday, November 18, 2010



[ 1 , 2 , 3 , 4 ].
  zip( ["a","b","c","d"] )

Thursday, November 18, 2010



[[1, "a"],
 [2, "b"],
 [3, "c"],
 [4, "d"]]

Thursday, November 18, 2010



[ 1 , 2 , 3 , 4 ]
 { |x|  x.odd? }

Thursday, November 18, 2010



[ 1 , 2 , 3 , 4 ]
[ 1     , 3     ]

Thursday, November 18, 2010



[ 1 , 2 , 3 , 4 ].
  select { |x| x.odd? }

Thursday, November 18, 2010



[ 1, 3 ]

Thursday, November 18, 2010



[ 1 , 2 , 3 , 4 ]
 { |x|  x.odd? }

Thursday, November 18, 2010



[ 1 , 2 , 3 , 4 ]
[ 1 , 2 , 3 , 4 ]

Thursday, November 18, 2010



[ 1 , 2 , 3 , 4 ].
  partition { |x| x.odd? }

Thursday, November 18, 2010



[ [ 1, 3 ], [ 2, 4 ] ]

Thursday, November 18, 2010



[ 1 , 2 , 3 , 4 ]
  { |x| x * x }

Thursday, November 18, 2010



[ 1 , 2 , 3 , 4 ]
  

[ 1 , 4 , 9 , 16 ]

Thursday, November 18, 2010



[ 1 , 2 , 3 , 4 ].
  map { |x| x * x }

Thursday, November 18, 2010



[ 1 , 2 , 3 , 4 ]
  

[ 1 , 4 , 9 , 16 ]

^2^2^2^2

Thursday, November 18, 2010



[ 1 , 2 , 3 , 4 ]

  1 + 2 + 3 + 4 => 10  

Thursday, November 18, 2010



1 + 2 + 3 + 4

==

((1 + 2) + 3) + 4

Thursday, November 18, 2010



[ 1 , 2 , 3 , 4 ].
  inject { |x,y| x + y }

Thursday, November 18, 2010



[ 1 , 2 , 3 , 4 ].
  inject { |x,y| x + y }

fold the list with +

Thursday, November 18, 2010



{ |x|  x.odd? }

{ |x|  x * x  }

{ |x,y| x + y }

Thursday, November 18, 2010



functions
are

first-class values

Thursday, November 18, 2010



# Python
for item in iterable_collection:
  # do something with item

# Ruby
set.each do |item|
  # do something with item
end

Thursday, November 18, 2010



next steps

Thursday, November 18, 2010



implies
recursion

over
persistent

data structures

Thursday, November 18, 2010



number ::= 0
         | 1 + number

Thursday, November 18, 2010



list ::= empty
       | item + list

Thursday, November 18, 2010



tree ::= empty
       | item + tree + tree

Thursday, November 18, 2010



induction
implies

recursion

Thursday, November 18, 2010



what
versus
how

Thursday, November 18, 2010



number ::= 0
         | 1 + number

if n = 0
   do something
else
   solve for 1
   solve for n-1
   combine

Thursday, November 18, 2010



number ::= 0
         | 1 + number

Thursday, November 18, 2010



number ::= 0
         | 1 + number

decrease and conquer

Thursday, November 18, 2010



number ::= 0
         | 1 + number

sequential

Thursday, November 18, 2010



number ::= 0
         | number/2
              +
           number/2

Thursday, November 18, 2010



number ::= 0
         | number/2
              +
           number/2

divide and conquer

Thursday, November 18, 2010



number ::= 0
         | number/2
              +
           number/2

parallel

Thursday, November 18, 2010



tree ::= empty
       | item + tree + tree

divide and conquer

parallel

Thursday, November 18, 2010



MapReduce

map an operator
over each item

reduce (fold)
the resulting list

Thursday, November 18, 2010



[ 8, 4, 1, 6, 7, 2, 5, 3 ]
  

[ 1, 2, 3, 4, 5, 6, 7, 8 ]

Thursday, November 18, 2010



[ 8, 4, 1, 6, 7, 2, 5, 3 ].
  map { |x| [x] }

[[8], [4], [1], [6],
 [7], [2], [5], [3]]

make a list of each item

Thursday, November 18, 2010



[[8], [4], [1], [6],
 [7], [2], [5], [3]].
    inject { |x,y| merge(x,y) }

merge the sorted lists, pairwise

[ 1, 2, 3, 4, 5, 6, 7, 8 ]

Thursday, November 18, 2010



[ 8, 4, 1, 6, 7, 2, 5, 3 ]
  .map    { |x| [x] }
  .inject { |x,y| merge(x,y) }

map/reduce

[ 1, 2, 3, 4, 5, 6, 7, 8 ]

Thursday, November 18, 2010



Implications for Parallelism

merge(a,b) == merge(b,a)

&&

merge(a, merge(b,c))
==

merge(merge(a, b),c)

merges can be done independently

Thursday, November 18, 2010



Thursday, November 18, 2010



really getting it

Thursday, November 18, 2010



class Proc
  def self.compose(f, g)
    lambda { |*args| f[g[*args]] }
  end
end

Thursday, November 18, 2010



class Proc
  def self.compose(f, g)
    lambda { |*args| f[g[*args]] }
  end
end

Thursday, November 18, 2010



class Proc
  def self.compose(f, g)
    lambda { |*args| f[g[*args]] }
  end
end

Thursday, November 18, 2010



class Proc
  def self.compose(f, g)
    lambda { |*args| f[g[*args]] }
  end
end

combinator

Thursday, November 18, 2010



A combinator is a function
that takes functions as input

and computes its result
by composing those functions. * 

* and nothing else. 
There are no free variables.

Thursday, November 18, 2010



combinator is to functional programming

as

framework is to object-oriented programming

Thursday, November 18, 2010



combinator is to functional programming

as

framework is to object-oriented programming

the next level of abstraction

Thursday, November 18, 2010



A Common Pattern...

widget.collection
 .select { |a_table| 
    a_table.widgets_column_name =~ regex }
 .map    { |a_table|
    widget.attribute_present?(a_table.widgets_column_name) &&
    { a_table.label
           => widget.send(a_table.widgets_column_name) }
      || {} }
 .inject(&:merge)

Thursday, November 18, 2010



Combinators in Action

suppose we want to find
the square of the sum
of all the odd numbers

between 1 and 100

Thursday, November 18, 2010



  (1..100)

Thursday, November 18, 2010



  (1..100).select(&:odd?)

Thursday, November 18, 2010



  (1..100).select(&:odd?).inject(&:+)

Thursday, November 18, 2010



lambda { |x| x * x }.call(
  (1..100).select(&:odd?).inject(&:+))

Thursday, November 18, 2010



lambda { |x| x * x }.call(
  (1..100).select(&:odd?).inject(&:+))

Thursday, November 18, 2010



A permuting combinator
composes two functions

in reverse order.  

Instead of f(g(x), we want g(f(x)).

Thursday, November 18, 2010



(1..100).select(&:odd?).inject(&:+)
  .callWithSelf(lambda { |x| x * x })

Thursday, November 18, 2010



(1..100).select(&:odd?).inject(&:+)
  .into        (lambda { |x| x * x })

Thursday, November 18, 2010



(1..100)
  .select(&:odd?)
  .inject(&:+)
  .into(lambda { |x| x * x })

Thursday, November 18, 2010



class Object
  def into expr = nil
    expr.nil? ? yield(self) : expr.to_proc.call(self)
  end
end

Thursday, November 18, 2010



Um, what about Scala?

Thursday, November 18, 2010



case class Thrush[A](x: A) {
  def into[B](g: A => B): B = {
    g(x)
  }
}

Thursday, November 18, 2010



Thrush((1 to 100)
  .filter(_ % 2 != 0)
  .foldLeft(0)(_ + _))
  .into((x: Int) => x * x)

Thursday, November 18, 2010



accounts
  .filter(_ belongsTo "John S.") 
  .map(_.calculateInterest)
  .filter(_ > threshold)
  .foldLeft(0)(_ + _)
  .into {x: Int =>
     updateBooks journalize
                 (Ledger.INTEREST, x)
   }

Thursday, November 18, 2010



Thursday, November 18, 2010



more?

Thursday, November 18, 2010



functional design patterns

Structural Recursion

Thursday, November 18, 2010



functional design patterns

Structural Recursion
Interface Procedure

Thursday, November 18, 2010



functional design patterns

Structural Recursion
Interface Procedure
Mutual Recursion

Thursday, November 18, 2010



functional design patterns

Structural Recursion
Interface Procedure
Mutual Recursion

Accumulator Passing

Thursday, November 18, 2010



functional design patterns

Structural Recursion
Interface Procedure
Mutual Recursion

Accumulator Passing
Local Procedure

Thursday, November 18, 2010



functional design patterns

Structural Recursion
Interface Procedure
Mutual Recursion

Accumulator Passing
Local Procedure

Program Derivation

Thursday, November 18, 2010



functional design patterns

Structural Recursion
Interface Procedure
Mutual Recursion

Accumulator Passing
Local Procedure

Program Derivation

Tail-Recursive State Machine
Continuation Passing
Control Abstraction

Thursday, November 18, 2010



Isn’t all this recursion
so inefficient

as to be impractical?

Thursday, November 18, 2010



This is the 21st century.

Thursday, November 18, 2010



garbage collection

Thursday, November 18, 2010



tail-call elimination

Thursday, November 18, 2010



def foo(...) = {
  if (n is base case)
     return some value
  else
     foo(...)
}

Thursday, November 18, 2010



<Scheme indulgence>

Thursday, November 18, 2010



def factorial(n: Int) = {
 def loop(n: Int, acc: Int): Int =
   if (n <= 0)
      acc
   else
      loop(n - 1, acc * n)

 loop(n, 1)
}

Thursday, November 18, 2010



return ’done

Thursday, November 18, 2010



If I had asked people
what they wanted,

they would have said
'faster horses'.

Henry Ford

Thursday, November 18, 2010



An invention has to make 
sense in the world

 in which it is finished,
not the world

 in which it was started.

Ray Kurzweil

Thursday, November 18, 2010



http://www.youtube.com/watch?v=c_5GpBgsang

http://weblog.raganwald.com/2008/01/no-detail-too-small.html

http://debasishg.blogspot.com/2009/09/thrush-combinator-in-scala.html

http://fupeg.blogspot.com/2009/04/tail-recursion-in-scala.html

http://www.cs.uni.edu/~wallingf/patterns/recursion.html

http://www.cs.uni.edu/~wallingf/patterns/envoy.pdf

http://mitpress.mit.edu/sicp/

http://sicpinclojure.com/

resources to study

Thursday, November 18, 2010

http://www.youtube.com/watch?v=c_5GpBgsang
http://www.youtube.com/watch?v=c_5GpBgsang
http://weblog.raganwald.com/2008/01/no-detail-too-small.html
http://weblog.raganwald.com/2008/01/no-detail-too-small.html
http://debasishg.blogspot.com/2009/09/thrush-combinator-in-scala.html
http://debasishg.blogspot.com/2009/09/thrush-combinator-in-scala.html
http://fupeg.blogspot.com/2009/04/tail-recursion-in-scala.html
http://fupeg.blogspot.com/2009/04/tail-recursion-in-scala.html
http://www.cs.uni.edu/~wallingf/patterns/recursion.html
http://www.cs.uni.edu/~wallingf/patterns/recursion.html
http://www.cs.uni.edu/~wallingf/patterns/envoy.pdf
http://www.cs.uni.edu/~wallingf/patterns/envoy.pdf
http://sicpinclojure.com
http://sicpinclojure.com

