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In the small, you know this.
It is no big deal.

In the large, this is different.
It changes how you think
about problems and data.

Two Claims
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you know this
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def addSalesTax( price )
    price * 1.07
end
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def addSalesTax( price )
    price = price * 1.07
end
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def addSalesTax( price )
    price = price * 1.07
end X
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def addSalesTax( price )
    tax   = price * 0.07
    price = price + tax
end
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def addSalesTax( price )
    tax   = price * 0.07
    price = price + tax
end X
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side effects
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side effectsX
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def addSalesTax( price )
    price * 1.07
end
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sort -m access01-ips access02-ips  \
     | uniq -d                     \
     | wc -l
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wc(“-l”,
   uniq(“-d”,
        sort(“-m”,
             access01-ips,
             access02-ips)))
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[ 1 , 2 , 3 , 4 ]
["a","b","c","d"]
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[ 1 , 2 , 3 , 4 ]
["a","b","c","d"]
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[ 1 , 2 , 3 , 4 ].
  zip( ["a","b","c","d"] )
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[[1, "a"],
 [2, "b"],
 [3, "c"],
 [4, "d"]]
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[ 1 , 2 , 3 , 4 ]
 { |x|  x.odd? }
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[ 1 , 2 , 3 , 4 ]
[ 1     , 3     ]
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[ 1 , 2 , 3 , 4 ].
  select { |x| x.odd? }
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[ 1, 3 ]
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[ 1 , 2 , 3 , 4 ]
 { |x|  x.odd? }
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[ 1 , 2 , 3 , 4 ]
[ 1 , 2 , 3 , 4 ]
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[ 1 , 2 , 3 , 4 ].
  partition { |x| x.odd? }
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[ [ 1, 3 ], [ 2, 4 ] ]
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[ 1 , 2 , 3 , 4 ]
  { |x| x * x }
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[ 1 , 2 , 3 , 4 ]
  

[ 1 , 4 , 9 , 16 ]
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[ 1 , 2 , 3 , 4 ].
  map { |x| x * x }
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[ 1 , 2 , 3 , 4 ]
  

[ 1 , 4 , 9 , 16 ]

^2^2^2^2
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[ 1 , 2 , 3 , 4 ]

  1 + 2 + 3 + 4 => 10  
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1 + 2 + 3 + 4

==

((1 + 2) + 3) + 4
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[ 1 , 2 , 3 , 4 ].
  inject { |x,y| x + y }
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[ 1 , 2 , 3 , 4 ].
  inject { |x,y| x + y }

fold the list with +
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{ |x|  x.odd? }

{ |x|  x * x  }

{ |x,y| x + y }
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functions
are

first-class values
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# Python
for item in iterable_collection:
  # do something with item

# Ruby
set.each do |item|
  # do something with item
end

Thursday, November 18, 2010



next steps
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implies
recursion

over
persistent

data structures
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number ::= 0
         | 1 + number
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list ::= empty
       | item + list
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tree ::= empty
       | item + tree + tree
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induction
implies

recursion
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what
versus
how
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number ::= 0
         | 1 + number

if n = 0
   do something
else
   solve for 1
   solve for n-1
   combine
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number ::= 0
         | 1 + number
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number ::= 0
         | 1 + number

decrease and conquer

Thursday, November 18, 2010



number ::= 0
         | 1 + number

sequential
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number ::= 0
         | number/2
              +
           number/2
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number ::= 0
         | number/2
              +
           number/2

divide and conquer
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number ::= 0
         | number/2
              +
           number/2

parallel

Thursday, November 18, 2010



tree ::= empty
       | item + tree + tree

divide and conquer

parallel
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MapReduce

map an operator
over each item

reduce (fold)
the resulting list
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[ 8, 4, 1, 6, 7, 2, 5, 3 ]
  

[ 1, 2, 3, 4, 5, 6, 7, 8 ]
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[ 8, 4, 1, 6, 7, 2, 5, 3 ].
  map { |x| [x] }

[[8], [4], [1], [6],
 [7], [2], [5], [3]]

make a list of each item
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[[8], [4], [1], [6],
 [7], [2], [5], [3]].
    inject { |x,y| merge(x,y) }

merge the sorted lists, pairwise

[ 1, 2, 3, 4, 5, 6, 7, 8 ]
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[ 8, 4, 1, 6, 7, 2, 5, 3 ]
  .map    { |x| [x] }
  .inject { |x,y| merge(x,y) }

map/reduce

[ 1, 2, 3, 4, 5, 6, 7, 8 ]
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Implications for Parallelism

merge(a,b) == merge(b,a)

&&

merge(a, merge(b,c))
==

merge(merge(a, b),c)

merges can be done independently
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really getting it
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class Proc
  def self.compose(f, g)
    lambda { |*args| f[g[*args]] }
  end
end
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class Proc
  def self.compose(f, g)
    lambda { |*args| f[g[*args]] }
  end
end
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class Proc
  def self.compose(f, g)
    lambda { |*args| f[g[*args]] }
  end
end

Thursday, November 18, 2010



class Proc
  def self.compose(f, g)
    lambda { |*args| f[g[*args]] }
  end
end

combinator
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A combinator is a function
that takes functions as input

and computes its result
by composing those functions. * 

* and nothing else. 
There are no free variables.
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combinator is to functional programming

as

framework is to object-oriented programming
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combinator is to functional programming

as

framework is to object-oriented programming

the next level of abstraction
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A Common Pattern...

widget.collection
 .select { |a_table| 
    a_table.widgets_column_name =~ regex }
 .map    { |a_table|
    widget.attribute_present?(a_table.widgets_column_name) &&
    { a_table.label
           => widget.send(a_table.widgets_column_name) }
      || {} }
 .inject(&:merge)
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Combinators in Action

suppose we want to find
the square of the sum
of all the odd numbers

between 1 and 100
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  (1..100)
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  (1..100).select(&:odd?)
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  (1..100).select(&:odd?).inject(&:+)
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lambda { |x| x * x }.call(
  (1..100).select(&:odd?).inject(&:+))
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lambda { |x| x * x }.call(
  (1..100).select(&:odd?).inject(&:+))
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A permuting combinator
composes two functions

in reverse order.  

Instead of f(g(x), we want g(f(x)).
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(1..100).select(&:odd?).inject(&:+)
  .callWithSelf(lambda { |x| x * x })
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(1..100).select(&:odd?).inject(&:+)
  .into        (lambda { |x| x * x })
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(1..100)
  .select(&:odd?)
  .inject(&:+)
  .into(lambda { |x| x * x })
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class Object
  def into expr = nil
    expr.nil? ? yield(self) : expr.to_proc.call(self)
  end
end
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Um, what about Scala?
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case class Thrush[A](x: A) {
  def into[B](g: A => B): B = {
    g(x)
  }
}
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Thrush((1 to 100)
  .filter(_ % 2 != 0)
  .foldLeft(0)(_ + _))
  .into((x: Int) => x * x)
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accounts
  .filter(_ belongsTo "John S.") 
  .map(_.calculateInterest)
  .filter(_ > threshold)
  .foldLeft(0)(_ + _)
  .into {x: Int =>
     updateBooks journalize
                 (Ledger.INTEREST, x)
   }
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more?
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functional design patterns

Structural Recursion
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functional design patterns

Structural Recursion
Interface Procedure
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functional design patterns

Structural Recursion
Interface Procedure
Mutual Recursion
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functional design patterns

Structural Recursion
Interface Procedure
Mutual Recursion

Accumulator Passing
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functional design patterns

Structural Recursion
Interface Procedure
Mutual Recursion

Accumulator Passing
Local Procedure
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functional design patterns

Structural Recursion
Interface Procedure
Mutual Recursion

Accumulator Passing
Local Procedure

Program Derivation
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functional design patterns

Structural Recursion
Interface Procedure
Mutual Recursion

Accumulator Passing
Local Procedure

Program Derivation

Tail-Recursive State Machine
Continuation Passing
Control Abstraction
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Isn’t all this recursion
so inefficient

as to be impractical?
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This is the 21st century.
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garbage collection
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tail-call elimination
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def foo(...) = {
  if (n is base case)
     return some value
  else
     foo(...)
}
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<Scheme indulgence>
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def factorial(n: Int) = {
 def loop(n: Int, acc: Int): Int =
   if (n <= 0)
      acc
   else
      loop(n - 1, acc * n)

 loop(n, 1)
}
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return ’done

Thursday, November 18, 2010



If I had asked people
what they wanted,

they would have said
'faster horses'.

Henry Ford
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An invention has to make 
sense in the world

 in which it is finished,
not the world

 in which it was started.

Ray Kurzweil
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http://www.youtube.com/watch?v=c_5GpBgsang

http://weblog.raganwald.com/2008/01/no-detail-too-small.html

http://debasishg.blogspot.com/2009/09/thrush-combinator-in-scala.html

http://fupeg.blogspot.com/2009/04/tail-recursion-in-scala.html

http://www.cs.uni.edu/~wallingf/patterns/recursion.html

http://www.cs.uni.edu/~wallingf/patterns/envoy.pdf

http://mitpress.mit.edu/sicp/

http://sicpinclojure.com/

resources to study
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