Fifteen Compilers in Fifteen Days

Jeremy D. Frens
Calvin College
1740 Knollcrest Circle SE
Grand Rapids, Ml 49546-4403

jdfrens@calvin.edu

ABSTRACT

Traditional approaches to semester-long projects in compiler
courses force students to implement the early stages of a
compiler in depth; since many students fall behind, they
have little opportunity to implement the back end. Conse-
quently, students have a deep knowledge of early material
and no knowledge of latter material. We propose an ap-
proach based on incremental development and test-driven
development; this approach solves the emphasis problem,
provides experience with useful tools, and allows for such a
course to be taught in a three or four weeks.

Categories and Subject Descriptors

K.3.2 [Computers and Education|: Computer and In-
formation Science Education—Computer science education;
Curriculum; D.2.3 [Software Engineering]: Coding Tools
and Techniques— Test-Driven Development

General Terms

Design, Human Factors, Languages

Keywords

compiler course, incremental development, refactoring, test-
driven development, unit testing

1. INTRODUCTION

Calvin College has experienced declining computer-science
enrollments over the past few years (like everyone else);
while these enrollments are likely to increase as they have
in the past, we anticipate a larger growth in our information-
systems major. Consequently, our compiler course may never
be offered again, especially when students prefer taking more
practical (or less frightening) upper-level electives.

Calvin has an interim term (a.k.a. a “January term”)
when students take one class for three hours a day for fif-
teen days. The courses are typically pass/fail, so it can be

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citation on thefirst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

S GCSE' 06, March 1-5, 2006, Houston, Texas, USA.

Copyright 2006 ACM 1-59593-259-3/06/0003 ...$5.00.

92

Andrew Meneely
Calvin College
Zeta 7
Grand Rapids, M| 49546

apm2@calvin.edu

a time for faculty and students to explore different, new, or
off-beat areas of their discipline. Since an interim course
moves so quickly, it seems dangerous to take on a large soft-
ware project, and it seems particularly ludicrous to take on
a large software project that also requires significant learn-
ing or background knowledge—a compilers course is right
out!

Or is it? Certainly the concepts behind a compiler could
be taught, and the programming assignments adjusted. An
Artificial Intelligence course could be taught during interim
(as we do at Calvin). The focus of such a course is on con-
ceptual learning from lectures and the textbook; students
implement just a few, smallish programs—fewer and smaller
than they might during a normal semester. Similarly, a
compiler course could stress the concepts of computer de-
sign, and programming assignments could be isolated por-
tions of a compiler. Many compiler instructors already take
this approach with the programming assignments. However,
Calvin’s tradition is to implement a complete compiler from
front to back—a tradition not given up lightly by students
or faculty.

A traditional approach to a front-to-back compiler has
students implement the stages of the compiler in the same
order in which they are used: a full lexer, then a full parser,
then a static-analysis stage, and then code generation. Fit-
ting this into an interim would be impractical: students will
inevitably fall behind, and most students will not reach the
latter stages of their compiler at all. Arguably, these latter
stages are more interesting, making the loss more regret-
table.

While contemplating our enrollment problems and the in-
sanity of putting a compiler course into the interim, one of
us (Frens) proposed using agile software development and
an incremental approach to writing a compiler: first write a
complete front-to-back compiler for a simple language; add
a new feature to the language and rework the compiler; re-
peat. This approach seems workable as an interim course.
Students see a complete compiler their first day and every
day after. Even when students fall behind in the course,
they have seen several complete compilers and have learned
the basics of each stage of a compiler. Missing the latter
features of the project means missing advanced topics, but
this is acceptable since advanced topics are less important
for the average student.

Since this was not an idea to take directly into an interim,
Frens recruited Meneely, a student, to try this approach as
an independent study during a full semester. This paper is
a description of what we did and of what we think should

be done. We offer this paper as a proof-of-concept and as a
guide for others.

This paper is organized into five sections. The next sec-
tion describes the tools used in this incremental approach.
The third section describes our independent-study course,
including suggestions for doing it better. The fourth section
describes some of the benefits of this approach. The last
section provides some concluding thoughts, including future
projects.

2. OURTOOLKIT

Incremental development builds a complete system at each
stage of development. Only a few features may be added
each time so that each stage is completed in a short pe-
riod of time. No consideration is made for what might be
implemented in future stages; only the current feature set
matters.

We used several tools in our development which made it
possible to take an incremental approach to developing a
compiler in an interim course. Understanding these tools is
critical to our claim.

2.1 Test-Driven Development

The key tool in incremental development is test-driven
development (TDD) [2]. TDD follows this process:

1. Write a unit test for a new ability in a class.

2. Add enough code to get rid of compiler errors but with-
out any useful computations.

3. Run the tests, and see the new test fail.
4. Repeat until all tests pass:

(a) Refactor.
(b) Write computation code to add the new ability.

5. Refactor.

Put enough new abilities together, and the compiler will
have a new feature, front-to-back.

The two key components in this process, unit testing and
refactoring, are described in the next two sections.

2.2 Unit Tests

The tests in TDD are unit tests [2, Part II]; we used JU-
nit [11][2, Chapter 4]. A unit-test tests one small bit of

the code. For example, the lexer should recognize the if
keyword:
assertToken(IF, "if", "if");

This assertion uses a special JUnit extension for lexers and
parsers [1]. IF is a special token type created by the lexer;
the first "if" is the expected text of the returned token; the
last "if" is the text to scan.

Every small ability of the code is unit tested at this level;
sometimes this means lots of unit tests for what seems like
a simple feature. For example, when testing the code gen-
eration for an integer literal, it is not enough to test just
one integer. A load-immediate instruction might be good
enough for small integers; larger integers might require two
or more instructions. It is also necessary to make sure that
small negative integers and large negative integers work as
well. This means at least four different unit tests.

93

The unit tests are run on a regular basis; generally when-
ever new code is introduced or code is changed. All of the
tests are executed, serving as regression tests so that old
abilities are not silently broken. Even if a bug does slip
through the unit testing, a new unit test can be added to
demonstrate the bug so that the bug is never happens again.

2.3 Refactoring

TDD works best (or at all) only when it includes refac-
toring [12]—changing the code without changing its effect.
The purpose of refactoring is both to simplify the code and
to make it more readable.

For example, consider the assertToken() method men-
tioned above. Originally, three statements were needed to
fully test a token:

public void testIfKeyword() {
Token token = makeLexer("if") .nextToken();
assertEquals(IF, token.getType());
assertEquals("if", token.getText());

}

Three statements like these would be repeated for each key-
word. So, before implementing any other keywords, the
common code in the existing test is refactored into a new
method for further reuse.

The first step is to generalize these three statements. In-
troduce Explaining Variable [12, pp. 124-127] is used three
times to create three temporary variables:

public void testIfKeyword() {
int type = IF;
String text =
String input = "if";
Token token = makeLexer (input).nextToken();
assertEquals(type, token.getType());
assertEquals(text, token.getText());

nifn ;

Extract Method [12, p. 110-116] is a very powerful refac-
toring to create a new method based on existing code. The
last three lines of the test method can be extracted into a
new method:

private void assertToken(int type, String result,
String input) {
Token token = makeLexer (input).nextToken();
assertEquals(type, token.getType());
assertEquals(result, token.getText());
}

The original method can use this new method:

public void testIfKeyword() {

String type = IF;
String text = "if";
String input = "if";

assertToken(type, text, input);
}

The test method can be simplified even more by inlining
the local variables:

public void testIfKeyword() {
assertToken(IF, "if", "if");

}

Now the new method can be reused for testing the lex-
ing of other tokens. The work spent on this refactoring is
amortized by the number of times it is used in the future.

Martin Fowler’s refactoring book [12] (i.e., the refactoring
book) has over seventy different refactorings, and it is cer-
tainly not an exhaustive list. Refactorings vary, of course, in
their usefulness and frequency, but even a familiarity with
a dozen refactorings is enough to be an effective test-driven
developer.

2.4 Test-Driven Development Revisited

Refactoring relies heavily on the tests. Not all refactorings
preserve all behaviors, and the unit tests serve as a safety
net: if the tests fail after a refactoring, the refactoring should
be undone, and a different refactoring should be tried.

Refactoring is necessary because the code from TDD is
written for only the current set of features; there is no up-
front design. When a new feature is added, the code needs
to be refactored before adding the new feature. Extracting
an interface and extracting methods (and other refactor-
ings) generalize the code so that the feature can be added;
renaming variables and methods are very helpful in putting
the programmer in the right frame of mind to add a feature.
Once a new feature is added, there may be new opportu-
nities for refactoring like extracting a method to eliminate
redundant code or renaming a variable to more accurately
describe its responsibilities..

3. OUR COMPILER COURSE

We met twice a week for “lecture” which mostly consisted
of discussing concepts from the textbooks [3, 13] and dis-
cussing our compilers. We also met a third time each week
for a two hour “lab” in the department’s computer lab; this
“lab” proved to be particularly effective. Our goal was to
develop a new compiler each week of a normal semester; dur-
ing an interim, it would be a new compiler each day—hence
our catchy “15 compilers in 15 days” mantra.

We implemented our own compilers in Java (J2SE 5.0) us-
ing the Eclipse IDE [5, 7] (version 3.0). We used ANTLR [14]
(version 2.7.5) to implement a front end. As mentioned
above, unit testing was done with JUnit [11][2, Chapter 4]
(version 3.8.1) and a JUnit extension for testing ANTLR
grammars [1] (alpha version).

Our target language was PowerPC assembly code, and
this was facilitated greatly by IBM’s The PowerPC Com-
piler Writer’s Guide [9].

3.1 TheFirst Three Compilers

A description of our first three compilers is instructive of
our proposed approach.

Compiler #1. We started with a compiler for an integer
language. That is, given a file with an integer in it, the front-
to-back compiler would read this file and generate PowerPC
code to print this integer.

Immediately with this first compiler, there are some judg-
ment calls that needed to be made. Java’s readLine () might
work fine for this first compiler unless ignoring whitespace
is part of the initial feature set. Since ignoring whitespace
was part of our feature set, we opted to use a formal lexer
from the beginning. A parser, on the other hand, was not
necessary since the language so far had no deep structure.

So the front end of this first compiler consisted of a lexer
which produced an INTEGER token. The back end turned an

94

INTEGER token into a PowerPC program to print the integer
value.

All together, this is actually a very significant amount
of material to learn: simple regular expressions (enough to
describe integers), PowerPC assembly code, lexer syntax,
and the lexer’'s API.

Compiler #2. For a second compiler, we added string
literals to our feature set. Now using a lexer really paid
off, and it involved learning some new features of ANTLR
(e.g., how to ignore the double quotes). Generating assem-
bly code also became more interesting. Overall, this was
very straightforward, and it might not have been ambitious
enough!

Compiler #3. For the third compiler, we implemented
infix arithmetic expressions.

Arithmetic expressions demand a parser. ANTLR’s data
structure for an abstract syntax tree has an awkward API,
and we wanted to use the visitor pattern [8, pp. 331-344]
to implement the algorithms for static analysis and code
generation. Consequently, we also implemented an ANTLR,
tree-builder to turn the parser’s input into our own “tree
intermediate representation” (TIR). So our front ends con-
sisted of three phases: a lexer, a parser, and a tree builder.

Since the output from the front end changed significantly
(i.e., from lexer tokens to tree-builder TIRs), we spent a
good deal of time refactoring the code for the back end. This
change is actually instructive since the token-based back end
was primarily procedural—a switch statement over the type
of token. By switching to TIRs and the visitor pattern, we
had much better object-oriented code.

An interesting opportunity arises with this third compiler:
constant folding. The language does not support variables
yet, and if one wanted to avoid learning how to do arith-
metic in PowerPC assembly code, one could learn about
and implement optimization on the third week of class!

Considering all that this third compiler involved, perhaps
it is not surprising that this took us more than one week.
In hindsight, arithmetic expressions should have been done
in stages—first binary expressions, then multi-term expres-
sions, then associativity, then precedence, etc. Essentially,
we did use these stages to implement the third compiler,
but it would have helped to make these stages explicit in
our planning.

While working on a constant folder and other parts of this
third compiler, we discovered issues we had not thought of
originally.? Omissions are to be expected and should be
embraced—it is what actually happens to developers, and
we learn more from our mistakes.

3.2 TheRest of the Compilers

Adding let expressions made symbol tables necessary and
introduced the idea of scope. It also meant that the constant
folder could not implement all of our arithmetic anymore.
We should have spent two weeks on adding let expressions,
breaking it down into smaller features.

Compound statements, if statements, and while state-
ments all took about a week. Adding three control-flow
statements sounds ambitious, but a while loop is just an
if with some extra gotos.

!By the end of the project, because of the number of algo-
rithms implemented over TIRs, students will appreciate the
visitor pattern and OOP in general.

2Like handling negative integers, for shame!

We used destination-driven code generation [4]. Special
approaches to compiler design like this have to be carefully
introduced in the feature sets.

Meneely implemented for loops but got distracted by the
PowerPC’s count register. It turned out to be much easier
to translate the for loop into a while loop as part of the
compiler’s static analysis.

Late in the semester, we tried to implement a linear in-
termediate representation (LIR), but that proved to be too
ambitious, mostly because we did not have an existing li-
brary of LIR instructions.

3.3 Teaching the Concepts

In the end we covered most of the conceptual material in
our “lectures” that would normally be covered in a compiler
course. The same could certainly be done during interim
where there are three hours of lecture per day as opposed to
our two hours per week. However, this implies that students
spend several hours outside of lecture working on that day’s
compiler.

One significant change to the lectures is the order in which
the material is taught. The first day of interim, students
need to know a little about regular expressions and lexers,
but perhaps the focus needs to be on assembly code. Parsing
could be skipped until needed the third (or even the fourth)
day, and some static analysis could be covered earlier.

The more flexibility students are given to pick their own
feature sets, the harder it is to keep the lectures synchronized
with everyone’s coding needs. The instructor also has to be
more flexible to cover the material as needed or restrict the
students’ options.

3.4 Good Things That We Did

Using Eclipse as our IDE was one of the smartest things
we did. The JUnit plugin is useful; an ANTLR plugin fa-
cilitates the editing and processing of ANTLR files. Eclipse
also provides a lot of automatic refactorings: rename any-
thing (method, variable, class, package, etc.), extract local
variable, extract method, extract constant, inline variable,
inline method, etc., etc., etc. Automatic refactoring tools
make the easy refactorings really easy and make the hard
refactorings possible.

We used CVS (Concurrent Versioning System) so that
rolling back to earlier versions of the compiler was not a
problem. (Eclipse has wonderful CVS support which also
helped.) A versioning system is important when refactor-
ing. A failed refactoring (i.e., it generates failed unit tests)
may need to be undone by restoring an earlier version. Oc-
casionally a sequence of refactorings actually make the code
worse, and then a CVS backup is essential.

Using a tool like ANTLR for the front end was the right
call. We found it relatively easy to refactor the grammar.
Implementing the parser itself would be considerably more
work than manipulating grammars.

One of us (Frens) had already written classes for TIRs
and interfaces for visitors on the TIRs. To ask students to
implement this code is busy work that detracts from learn-
ing about compilers; however, it violates the “build only
what you need” mantra of agile development®. The trade-
off seems worthwhile for pedagogical reasons.

3E.g., many of the methods in visitor subclasses throw “not
implemented” exceptions.

95

Halfway through the semester, it was discovered that mock
objects [2, Chapter 7] are very helpful in testing a compiler.
A mock object is, as the name suggests, an object that pre-
tends to be another object. We used jMock [10] (version 1.0)
to mock subexpressions, e.g., the subexpressions of an if ex-
pression. A mock object can be told what methods will be
invoked on it and what to return. This avoids having to
test, for example, integer processing at the same time that
if expressions are being tested; the mock object will indi-
cate whether or not the right methods on the subexpressions
have been called.

3.5 Things We Should Have Done

We did not do a good job judging some costs and benefits.
For example, generating assembly code for the PowerPC is
not trivial. It is perhaps a good target for students really in-
terested in assembly code, but these students need to know
that it comes at a cost—they may not get to an optimiza-
tion step that others do. Targeting a virtual machine (like
Parrot) is an easier target for the back end. All compiler
courses face this same problem; however, it is greatly am-
plified during an interim.

Some acceptance testing would have been helpful to moti-
vate changes in the compiler. Using a tool like FitNesse [6],
we would enter a high-level acceptance test, describing a new
feature for the compiler. The errors this test produces would
indicate what unit tests to add in order to add abilities to
our classes.

We both fell back on bad programming practices out of
fear. One of us neglected his unit testing; the other let his
schedule slip without readjustment. Discipline is the pri-
mary answer to these issues. Discipline would be even more
important during interim when time pressures are keener.

Picking a good target for the generated code and the
schedule slip actually have an issue in common: the abil-
ity to estimate coding time. Even if the estimates are way
off, this practice would have forced us to think through the
cost of generating PowerPC code, and we would be forced
to readjust schedules.

In a class of ten to twenty students, it would also be possi-
ble to work on compilers in groups. Going at it (practically)
alone was not a bad experience for us, but group work or
pair programming or both would not change anything fun-
damental to the incremental approach described so far; it
would just let more get done.

4. EVALUATION OF 15-IN-15

One significant drawback of this approach is the TDD
knowledge that is needed. Using JUnit, FitNesse, and jMock
is not trivial, and if students do not have previous experience
with these technologies, time will have to be spent teaching
them. This seems like a worthwhile trade-off, even at the
cost of some compiler knowledge, because these are prac-
tical technologies used outside the classroom—turning the
compiler course into a provably practical course! Having
used these tools heavily on a significant project, students
should not be embarrassed at the end of the class to list
these technologies on their resumés.

Working on one compiler as a group would allow for more
of the compiler to be written. If a group used pair program-
ming and switched partners regularly, students should see
and work with a significant portion of the compiler.

‘What/When Traditional

Incremental, test-driven

Halfway through

the semester. plete language.

Complete lexer and some parser for a com-

Complete front-to-back compiler for a simple
(but non-trivial) subset of a language.

End of semester.

plete language.

Complete lexer, complete parser, some static
analysis, and little code generation for a com-

Complete front-to-back compiler for a signif-
icant portion of a language, including some
optimizations.

Table 1: Average Student’s Accomplishments

Shunning an up-front design gives both the instructor and
the students the flexibility to change feature sets even on
day fifteen. If a student discovers register allocation halfway
through the interim, it can be added to the next feature set
for the following day (of course, only after estimating the
costs and benefits). Some care should be given, though, to
the first few features sets for pedagogical reasons, so that
the basics can be covered effectively and advanced features
can be added easily.

Working on the whole compiler each week demonstrated
very well why some language features are implemented where
they are. For example, it quickly becomes clear that a parser
has the abilities to handle operator precedence, and the ben-
efits of this are seen immediately when the back end of the
same compiler is implemented. Similarly, range checking of
integers (for overflow) is most easily handled during static
analysis when the integer can be evaluated directly; han-
dling this in the lexer (in a regular expression) is not a fun
way to spend an afternoon.

A spiral approach to teaching, which arises naturally with
this incremental-development of a compiler, has the advan-
tage of showing material to students multiple times. Their
first exposure is shallow and very basic; subsequent expo-
sures reinforce the basic material and introduce more ad-
vanced material. This repetition helps the students retain
the material after the course is finished.

The other pedagogical benefit of our approach is the em-
phasis placed on the material (summarized in Table 1). One
problem with a traditional front-to-back compiler course is
that the early stages of a compiler are disproportionately
emphasized more than the latter stages. When (not if) av-
erage students spend too much time finishing the tricky bits
of their scanners and parsers, they fall behind and run out
of time to finish the last stages, usually code generation. An
incremental, test-driven approach forces the students to see
all phases of their compilers each day. Each day may stress
a different part of the compiler (e.g., arithmetic expressions
stress the parser, while loops stress code generation). In
the end, each stage of the compiler is stressed as much as it
should be.

5. CONCLUSION

Two further projects are planned for Spring 2006. First,
we plan to repeat our proof-of-concept experiment, this time
developing ray tracers. Mock objects and acceptance tests
will be used from the beginning to determine their actual ef-
fectiveness; we will estimate our coding times and plan more
honest schedules. We are curious whether this approach
works any better or worse educationally with ray tracers
compared to compilers. Ray tracers are more modular, and
we hope that this leads to some interesting possibilities.

96

Second, students in a programming-languages course will
use incremental development to write an interpreter. Our
programming languages course has significant coverage of
regular expression and context-free grammars, so the inter-
preter project maps very well to our compiler experiment.

Our experience convinces us that incremental develop-
ment with test-driven development is a great way to ap-
proach a front-to-back compiler in a compiler course. It
provides great flexibility (even for a three week course); it
exposes students to useful and practical tools; and it more
fairly emphasizes course material. We have great hopes for
our new projects and for this approach in general.

6. REFERENCES

[1] ANTLR-testing website.
http://antlr-testing.sourceforge.net.

D. Astels. Test-Driven Development: A Practical
Guide. Prentice Hall PTR: Upper Saddle River, NJ,
USA, 2003.

K. D. Cooper and L. Torczon. Engineering a
Compiler. Morgan Kaufmann: San Francisco, 2004.
R. K. Dybvig, R. Hieb, and T. Butler.
Destination-driven code generation. Indiana University
Computer Science Department Technical Report
#302, February 1990

[5] Eclipse website. http://www.eclipse.org/.
FitNesse website. http://www.fitnesse.org/.

D. Gallardo, E. Burnette, and R. McGovern. FEclipse
in Action. Manning: Greenwich, 2003.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison Wesley: Reading,
Massachusetts, 1995.

S. Hoxey, F. Karim, B. Hay, and H. Warren, editors.
The PowerPC Compiler Writer’s Guide. Warthman
Associates: Palo Alto, CA, 1996.

0] jMock website. http://www.jmock.org/.

1] JUnit website. http://www. junit.org/.

2] M. Fowler. Refactoring: Improving the Design of
Existing Code. Addison Wesley: Reading,
Massachusetts, 1999.

S. S. Muchnick. Advanced Compiler Design and
Implementation. Morgan Kaufmann: San Francisco,
1997.

T. Parr. ANTLR Reference Manual,
http://wuw.antlr.org/doc/index.html, 2005.

=Y

