
Variations on a Polymorphic Theme:
An Etude for Computer Programming

Joseph Bergin
Pace University

Computer Science
New York, NY USA
1 (212) 346 1499

berginf@pace.edu

ABSTRACT
This paper describes a technique by which instructors and
programmers can increase their skill with Object-Oriented
programming by practicing writing polymorphic programs in
an intensive way.

Categories and Subject Descriptors
D.1.5 [Programming Techn iques]: Object-oriented
Programming

D.3.3 [Programming Languages]: Language Constructs and
Features – polymorphism, Control structures, Patterns

General Terms
Algorithms, Design, Languages

Keywords
Polymorphism, Object-Oriented Programming, Learning

1. INTRODUCTION
Suppose you are a programmer. Suppose you learned a
language like C or Pascal and are good at it. Suppose that you
now want to become a good Java programmer using the
language to its full effect. This implies moving your
programming style from procedural programming to object-
oriented (OO) programming. How can you do it if object
thinking is very different from procedural thinking? Suppose
you are a teacher. Suppose you want to teach object-oriented
programming to your students, but you are a much better
procedural programmer than an OO programmer. After all, when
faced with a programming problem, it isn't difficult for you to
come up with a (procedural) solution. It probably involves if
statements or the equivalent. Your lectures and answers to
student questions probably reflect this understanding. Your
facility with selection constructs gets in the way of OO
programming since you naturally see a procedural solution
first. How can you make the transition to be a more effective

programmer or educator in the OO paradigm?

Many people moving to Java think that if you
program with classes and inheritance you are an object-
oriented programmer. In fact, it takes more. Object-orientation
is not about classes or even inheritance. It is about
polymorphic run-time message dispatch. All programs need to
handle situations in which more than one action is possible at
a given program point. Procedural programmers handle this
situation with if statements and similar selection mechanisms.
Object programmers handle it, instead, with polymorphism.
This requires thinking differently about programming, but i t
can lead to better structured more maintainable programs.

My intention here is not to argue the above
statements, which are not controversial among skilled OO
programmers, but to try to show you a way to develop the skill
that will give you a basis for judging them for yourself. An
implication of the above, however, is that OO programs have
fewer if statements than procedural programs. Just as
functional programs solve problems without iteration, using
recursion, OO programs solve problems without selection,
using polymorphism.

Switching dimensions for a moment, in music an
etude is a piece of music that in itself may have no intrinsic
musical value, but is valuable to a musician for the exercise in
practicing some particular technical skill. A student flutist, for
example will be given an etude with many sixteenth notes and
complex combinations, just to give the student valuable
finger and lip exercise. Professional musicians use these as
well and they are not just for novices. A clarinetist who wants
to play the flute will find etudes especially useful, since their
hand and lip training on clarinet is all wrong for the flute.

Many of the exercises we set to students, in fact, are
etudes. The program has no intrinsic value but will teach the
student some important technical skill. Even the student
project in a first compiler course usually fits this mold. So I
propose an etude for anyone who is a good procedural
programmer who wants to become a good OO programmer.

2. THE POLYMORPHISM ETUDE
Find some old program that you have around and that you
are proud of. I'll suppose that it is several hundred lines; say
about 10 pages. Strictly as an etude, rewrite that program
with NO if/switch statements: no selection at all. Solve all o f
the problems your ifs solve with polymorphism.

Note also that an etude may need to be practiced more
than once to get the required skill, so I don't suggest that
doing this once is sufficient, but it will be instructive to do i t

even once. When you can do it consistently, you have
developed a new skill that you can use as appropriate in your
regular programming. I'm not suggesting that good OO
programs never have if statements, in fact, but until you can
write one without if statements you are not sufficiently skilled
with an important technique.

Let me put it another way. In Plato's Allegory of the
Cave, people were constrained throughout their lives to look
only straight ahead at a wall, upon which shadows were cast by
people walking by behind them carrying various objects. They
had no knowledge of the reality behind them, only the
shadows before. Being intelligent, they made suppositions
about the reality that they experienced, but had no way to
posit that there were three dimensional beings casting the
shadows, nor the mechanism by which the shadows were cast,
or even that their reality was just shadows.

In the same vein, it is hard to judge whether OO
thinking is really different from procedural thinking until you
are skilled in both. Only then can you really judge. If you
think it can't be that different, then you have an exciting
experience still ahead of you. The above etude is an attempt to
give you a wonderful "aha" experience.

3. IMPLEMENTATION
If you take this challenge it will be helpful to have a bit of
guidance as to how to proceed. You might want to try it first
before continuing, though. The hints below are not a
substitute for practicing this etude. It is practice that will teach
you the skill. When you no longer struggle with this you can
think of yourself as an expert.

The first step is somewhat simple and it involves the
language in which you discuss the problem. We normally
think of if and when as interchangeable in the following: "If
the account is a user account, then add interest, else add
interest and deduct taxes," versus "When the account is a user
account add interest, and when it is a business account add
interest and deduct taxes." While the semantics is the same
(assuming only user and business accounts exist, of course)
the situation is subtly different if this is a discussion leading
to a program to model the action.

In the first case you are led immediately and directly
to model it with an if statement and your language seems to
imply that you have already made this design decision. The
second form is much more interesting, however, as it is less
tied to any program syntax, so it leaves you some mental
wiggle room in coming up with a solution. You could map the
"when" to a Java if statement, or you could alternately think
that when the object is a user account it should itself add
interest and when the object is a business account it should
itself add interest and deduct taxes. This is in fact a more OO
solution.

So the first, simplest, recommendation is replace if in
your problem discussions with w h e n . Again, I'm not
suggesting that you always think this way. It is just for the
purposes of the etude. You may, however, find it useful
generally, and if you are a teacher, it may help to state
problems to your students in this more "solution neutral" way.

The rest of the advice on how to succeed with the
etude is a bit more complicated. One of the implications,
however, is that you will be writing quite a few classes, though
they will be very simple, and you will have lots of objects.

I've been in discussion forums in which some of the
respondents (who have probably not tried the etude) press
others to write few classes, create few objects, and write long
(read complex) methods. While it is possible to program this
way, it isn't the OO way. There is nothing wrong with creating a
lot of objects. In fact, in OO programming we celebrate objects.

The key to programming with polymorphism alone i s
to capture each possible action when there are several in a
different object. Sometimes these different objects are from
different classes, but many times we can just parameterize the
construction of the objects to capture the difference. If we do
need different classes then they can, perhaps, derive from a
common superclass that defines the protocol. In Java, however,
we prefer interfaces to inheritance for this situation as it leaves
us more flexibility. In situations when you can factor common
behavior into the superclass the inheritance solution may be
preferred, but think of the interface first.

While it is somewhat off the topic here, it is also a
good idea to use the following heuristic. When you implement
an interface or extend a class (perhaps abstract) the only public
methods in the new class should be those defined in the
interface or inherited from the superclass. Private helper
methods for the re-implementations of the public methods are
fine, but don't extend the public protocol of the superclass
unless you can think of no other way to proceed. If you are
able to do this successfully you will never need to cast a value
and that will save you both if statements and errors.

And by the way, I'm not suggesting you replace all i f
statements with try blocks where the else is just the body of a
catch clause. None of that. We are after the polymorphism
etude here, not the exception handling etude. You are,
however, allowed to use library code even though you are
pretty sure that it was implemented with selection.

The next thing you need to know is that your
program must manipulate (non-final) objects, not primitives.
The int and char types in Java are not objects and therefore
have no opportunity to behave polymorphically. The Integer
and Character classes are no better, since, being final, they
cannot be extended to provide new behavior. So your program
must be built out of objects defined in non-final classes

Now that you have the behaviors factored into
different objects, the only thing needed is to bring the right
object to bear at the right time. Passing different objects to a
method can result in polymorphic action. The trick is to learn
how to pass the right object. If you need an if statement to
choose it, then you are still not being polymorphic enough.

This takes some creativity in general. An extremely
simple case is that when you write a Java GUI program write
distinct listeners for different buttons. Another simple case i s
discussed in the next section. It depends on a common
situation in which the flow of state is well determined in the
program. In general, you may need to map some values into the
objects that have the behaviors. Hash maps are good for this. A
common situation is that you need to treat negative integer
values differently from non-negative values. You can use max
and min library routines to map the negatives all to 0 and the
non-negatives all to 1, and then use these values to pick out an
object appropriate for negatives (printing error messages,
perhaps) and a different object for the other values. An array,
Vector, or HashMap can hold the objects, for example. Section
7 shows some details of how to use this idea.

4. A SIMPLE EXAMPLE
Let me next present a simple example that will get you started
in thinking appropriately to be successful with this exercise. A
while ago, Ward Cunningham, described to me his experience
in helping his son, a high-school senior, learn to program.
They both wanted something interesting to do. Ward
suggested that they might take their own home and program i t
as if it were a dungeon game. A Person object could move
through various Place objects (rooms, hallways, etc.) and find
and use various Thing objects. Things can be picked up and
carried. One of the more creative Things was a Transporter
object. The idea is that the first time you activate a Transporter
it enters the charged state in which it remembers the room in
which it was activated (not necessarily the room in which i t
was found). The next and subsequent times that you activate it,
you are transported immediately to the room in which it was
charged. Said another way, "When you activate it for the first
time..." and "When you activate it subsequently..."

You can solve this simply with a flag variable and an
if statement, of course, and this solution probably naturally
occurred to you. An OO programmer, however, would think
like the following. We have two different actions and either i s
possible when the transporter is activated. We will therefore
choose to put these two actions into different objects, but not
into two different transporter objects as we only want one of
these. Instead, the strategy that a transporter will use when
activated will be abstracted into an object, and we will have
two of these (or more, if the problem evolves into something
more sophisticated.) The transporter will delegate its activate
action to one of these strategy objects.

Note that these strategy objects follow a well-known
Strategy design pattern that you can find in [3]. And note
further that we have just implied that delegation is a really big
idea in this etude. An object can and should delegate some of
its actions to other objects. When you need different behavior,
delegate to a different object. The object that does the
delegation will seem to change its behavior. In effect, the
transporter object is built by composition (holding a strategy
object at any given point in time) rather than inheritance.

So a TransportStrategy interface can be defined by

interface TransportStrategy {

public void perform(Transporter transporter);

}

A Transporter object will hold a reference to one of
these in a field as its currentStrategy, and, when asked to
activate, it will just fire a p e r f o r m message to its
currentStrategy.

We implement the interface twice to create
InitialStrategy and ThereafterStrategy, where the perform of
the first has the transporter remember the room it is in and also
set the currentStrategy of the transporter to be a new
ThereafterStrategy (replacing itself). After the transporter i s
first activated (delegating to the initial strategy) i t
automatically holds a ThereafterStrategy in place of the
original, so when asked to activate again it will now delegate
to one that will transport the owner (a Person object) back to
the remembered room.

The key to this is that we know the point in the
program at which to replace one strategy with another and
therefore don't need to execute any test to see which state we

are in or which should be next. The strategy object itself
represents the state: it is a "flag with behavior". So we don't
test the "flag," we just ask it to execute the behavior it knows.
The key is that each value of the flag is an object that has
distinct behavior.

To summarize, first map the different behaviors into
different "strategy" objects and then find a mechanism for
associating the object that needs the behavior with the
appropriate strategy. Many programs can be built so that this
is easy to do, since there may be well-defined points, though
more complex than the above, where such transitions occur.
Any program for which you can draw a state transition diagram
fits this description, in fact. When something happens that
causes you to change your state, program that "something" to
also replace one strategy object with another that represents
the next state.

When you think about why you normally put i f
statements in your programs, you will discover that many of
them are simply to regain information that you had earlier in
your program that you lost. An i f statement captures
knowledge about state, of course. Think of executing an i f
statement as "climbing information hill" as you have a higher
level of information within the i f statement than without.
However, as soon as you leave the if statement you normally
fall down the other side of the hill and lose the information
again. The key to good OO practice is that when you do have
information, you capture it in the form of objects that know
how to properly manipulate it. These are then passed to the
places where the information is needed.

Somewhat harder cases to handle are those in which
an action depends on several conditions. In procedural
programming this leads to complex conditions. In object
programming you may need to delegate more than once to
reach a state in which you find the appropriate action. You
might also be able to hold the strategy objects in a hash map
with keys representing the possible sets of conditions for
which that strategy is appropriate. You can use this trick to
build a Turing Machine with no if statements. Well, maybe you
will need a test for null, which cannot be polymorphic. The
details are left as an exercise. And of course, if you can build a
Turing Machine this way, you can build anything. You can
also build a lisp like (car, cdr, cons) linked list entirely
without if statements. You will want to investigate the Null
Object pattern to do so, however. [4]

Chapter 4 of Karel J Robot [2] also gives hints about
what is possible to do with simple polymorphism, especially
strategies, as well as more on some elementary design patterns
that help.

5. CONCLUSIONS
 Prefer when to if. Prefer objects to primitives. Prefer interfaces
to inheritance. Prefer delegation and composition to complex
hierarchies. Prefer many simple classes to a few complex ones.
Prefer many simple methods to a few complex ones. Make the
parts simple. Put complexity into the interactions. Have fun.

Once you can program polymorphically you will be a
better judge of when selection and polymorphism are best
applied. You will be a better programmer for having better
skills.

6. ACKNOWLEDGMENTS
I'd like to thank Kent Beck, the creator of Extreme
Programming (XP), for nudging my gray matter in a direction
that made this possible. In a talk on XP, Kent described the
twelve practices in their pure form as just etudes that need to
be practiced by any developer and that will improve your skill
when you do so. He sometimes describes XP as turning all the
knobs up to 10. It is in this sense that XP is extreme. The etude
becomes the actual practice.

7. APPENDIX – TEXTBOOK EXAMPLE
Here is the crux of the solution of a simple example. It is taken
from Barnes and Kölling's book [1]. The problem is to build a
simple ticket machine that takes money and prints tickets. One
wrinkle is that when negative amounts of money are entered we
need to print error messages. I won't show a complete solution,
but will show the key steps that transform this into a program
using only polymorphism as a control structure (beyond
sequence and message passing, of course). I will develop it as a
programmer might.

One key operation in which the negative/non-
negative problem arises is in the insertMoney method. For
non-negative amounts we increment a balance. For negative
amounts we print an error message. As mentioned above there
are two steps: (1) divide the behaviors into different classes,
and (2) map the problem values into the objects so defined. We
handle these in order.

Let us define an interface that specifies the method and that
will be implemented twice for the different behaviors. The
interface and its implementations will be inner classes within
the TicketMachine class.

private interface Amount {

public void incrementBalance();

}

We next implement this twice in separate classes

private class NonNegative implements Amount

{

public NonNegative(int value)

{

rememberedValue = value;

}

public void incrementBalance()

{

balance += rememberedValue;

}

int rememberedValue = 0;

}

Here balance is a field of the containing class. The
Negative class just prints an error message.

public class Negative implements Amount

{

public void incrementBalance()

{

System.out.println("Negative insert not

allowed");

}

}

So now we have our two different behaviors. To bring
the right object to bear at the right time we need to map
negative integers into a Negative object and non-negatives
similarly. We will do this with a factory. Assume we have an
AmountFactory class that knows how to do this mapping and
return an appropriate Amount object. Also assume that a
TicketMachine holds a reference, factory, to an object of this
class. Then we can implement insertMoney quite easily in
TicketMachine. We delegate the operation to an object
provided by the factory

public void insertMoney(int amount)

{

Amount discriminator =

factory.getAmount(amount);

discriminator.incrementBalance();

}

Finally we need to see how to build the factory that
implements step 2 of our plan. This is where the actually
mapping is done. Note that the max function will map a
portion of the integers into a single value, as will min. We use
both here. We ultimately map the negatives all to 0 and the
non-negatives all to 1.

private class AmountFactory

{

public Amount getAmount(int amount)

{

int check = Math.max(-1, amount);

check = Math.min(check, 0);

check += 1; // 1 or 0;

Amount negative = new Negative();

Amount nonNegative =

new NonNegative(amount);

amounts.put(one, nonNegative);

amounts.put(zero, negative);

return amounts.get(new Integer(check));

}

private HashMap amounts = new HashMap();

private static final Integer zero = new Integer(0);

private static final Integer one = new Integer(1);

}

First we use max and min to map the original amount
into either 1 or 0. We then create new objects of the two above
classes and put them into a hash map with appropriate keys.
We then extract the one we want, based on the check value. The

inefficiency of this can be easily overcome. There is no need to
create new Amount objects if we are willing to make them
mutable. Then the hash map can be loaded at startup with two
(mutable) values.

While the above seems like a lot of work to avoid an
if statement, remember that this is just an etude. In fact, your
etude may even result in overly complicated and ugly code,
though it is worth the effort to think about how to improve it.
The author does not advocate trying to use this with novice
students unless the results are expected to be elegant code and
a good design.

However, this does have benefits in practice, as what
we have seen here can remove many if statements, not just the
one. Suppose we now tackle another problem in which the
distinction between negative and non-negative values i s
critical: printing tickets. The machine should only print a
ticket w h e n there is sufficient money. Continuing our
development of the above, we find that we have all of the
infrastructure in place to do this easily. We add a new method
to the Amount interface:

public void printTicket();

Now the above factory can be used to do the
discrimination in the printTicket method of the TicketMachine
class and it will again delegate to the appropriate Amount
object. In TicketMachine, all we need is:

public void printTicket()

{

Amount discriminator =

factory.getAmount(balance - costOfTicket);

discriminator.printTicket();

}

We use the difference between the current balance and
the cost of a ticket to get an Amount object from the factory.
When this is non-negative the machine can issue a ticket.
Otherwise it must complain.

We then implement the new interface method twice.
Within NonNegative it looks like this:

public void printTicket()

{

System.out.println("************");

System.out.println("* BlueJ Line");

System.out.println("Admit one");

System.out.println("************");

balance = balance - costOfTicket;

}

And within Negative it just prints an error message
(omitted here).

In fact, we can handle all negative/non-negative
situations in the program the same way. So we amortize the
effort to build the factory/mapper over a set of usages.
Moreover we bring all of the negative handling/error
processing together in one class and the valid actions together
in another.

Note that while a procedural programmer
programming Java would probably write one class, we have an
interface and four classes here. Adding a GUI adds six more
(five listeners and a Frame extension). But all methods are
short and straightforward. We create quite a number of objects,
though that can be greatly reduced with a little thought. And
code locality is very good, though very different from
procedural code locality.

8. REFERENCES

[1] Barnes, D., Kölling, M., Objects First with Java: A
Practical Introduction Using BlueJ, Pearson Education,
2002

[2] Bergin, J., Stehlik, M., Roberts, J., Pattis, R., Karel J
Robot: A Gentle Introduction to the Art of Object-
Oriented Programming in Java, Unpublished manuscript.
Available on the web at:
http://csis.pace.edu/~bergin/KarelJava2ed/Karel++JavaEd
ition.html

[3] Gamma, Helm, Johnson, and Vlissides, Design Patterns.
Addison-Wesley, 1995.

[4] Bobby Woolf, Null Object, Pattern Languages of
Program Design 3, Robert Martin, Dirk Riehle, Frank
Buschmann (eds),

