
 WHY PROGRAMMING IS A GOOD MEDIUM FOR EXPRESSING POORLY 
UNDERSTOOD AND SLOPPILY-FORMULATED IDEAS 
 
Marvin Minsky 
 
MIT 
 
This is a slightly revised version of a chapter published in Design and Planning II -- 
Computers in Design and Communication, (Martin Krampen and Peter Seitz, eds.), 
Visual Committee Books, Hastings House Publishers, New York, 1967. 
 
There is a popular, widespread belief that computers can do only what they are 
programmed to do. This false belief is based on a confusion between form and content. A 
rigid grammar need not make for precision in describing processes. The programmer 
must be very precise in following the computer grammar, but the content he wants to be 
expressed remains free. The grammar is rigid because of the programmer who uses it, 
not because of the computer. The programmer does not even have to be exact in his own 
ideas-he may have a range of acceptable computer answers in mind and may be content 
if the computer's answers do not step out of this range. The programmer does not have to 
fixate the computer with particular processes. In a range of uncertainty he may ask the 
computer to generate new procedures, or he may recommend rules of selection and give 
the computer advice about which choices to make.   Thus, computers do not have to be 
programmed with extremely clear and precise formulations of what is to be executed, or 
how to do it. 
 
===== 
 
The argument presented here is not specifically about "design," but about the general 
question of what we can get computers to help us do. For a number of reasons, it is 
customary to underestimate the possibilities.  To begin, I want to warn against the pitfall 
of accepting the apparently "moderate" positions taken by many people who believe they 
understand the situation. Science-fiction writers, scientists of all descriptions, economic 
forecasters, psychologists, and even logicians tell us often, and make it a convincing tale, 
that computers will never really think. "We must not fall into anthropomorphic ways of 
thinking about machines; they do only what their programs say; they can't be original or 
creative." We have all heard these views, and most of us accept them. 
 
It is easy to understand why a humanist will want to rhapsodize about the obscurity of 
thought processes, for there is an easy non sequitur between that obscurity and the 
desired an anthropomorphic uniqueness. But this isn't the non sequitur important here. 
The fallacy under discussion is the widespread superstition that we can't write a computer 
program to do something unless one has an extremely clear, precise formulation of what 
is to be done, and exactly how to do it. This superstition is propagated at least as much by 
scientists‹and even by "computer scientists"‹as by humanists. 
 
What we are told, about the limitations of computers, usually takes this general form: "A 



computer cannot create. It can do only exactly what it is told. Unless a process is 
formulated with perfect precision, you cannot make a computer do it." Now this is 
perfectly true in one sense, and it is absolutely false in another. Before explaining why, it 
is interesting to note that - long before computers - the same was said of the Devil: he 
could only appear to be creative. 
 
In the September 1966 issue of Scientific American, I discussed three programs: one is 
the checkers program of Samuel, which plays at the master level.  Another is the 
ANALOGY program of Evans, which does rather well on certain intelligence-test 
problems of recognizing analogous relations between geometric figures. The third is the 
program "STUDENT" of Bobrow, which takes high school algebra "story" problems 
given in English: 
 
Mary is twice as old as Ann was when Mary was as old as Ann is now. If Mary is 24 
years old, how old is Ann? 
 
and solves some, but not all of them. In that article I was concerned with problems of 
going further, to extend such work in the direction of more versatile general intelligence. 
But for my purpose here, they can serve as adequate examples even in their present state, 
for while limited in what they can handle, they already do enough to confound the old 
comfortable superstitions. 
 
The old view is that a program is "nothing but" a set of rigid rules for exactly what to do 
in each situation. This is indeed a useful point of view for reassuring beginners at 
programming, or for analyzing the programs written by beginners. However, for more 
advanced processes, while "perfectly" true in one sense, it would be as correct to say that 
"houses are nothing but arrangements of construction materials" or "books are merely 
long strings of words." Indeed, a review of my Scientific American article (in Computer 
Reviews 8, 1, Jan. 1967) asserts that these programs are made of "dictionary lookup 
routines, sequences of search and comparison functions, and sort-merge type operations." 
 
LOGIC AND CONSISTENCY 
 
Let me begin by discussing one of the skeptical attitudes that is derived from some 
statements of good logicians and bad philosophers. We are told that certain theorems 
about proving the self-consistency of logical systems have the consequence: "It is 
impossible to mechanize completely the process of discovery and therefore humans will 
always have the advantage over machines." I am sure almost every reader has heard of 
Godel's theorem, and most have heard of this alleged consequence. But this is not a 
logical consequence, for it is based on a careless technical oversight. If applicable at all to 
the problem-solving question, Godel's theorem applies strictly only to perfectly self-
consistent logical systems. People are not this consistent, and there is no reason whatever 
why we should feel constrained to build our machines along such lines. Instead we can, 
and already do, build machines that can tolerate contradictory factual assertions. To do 
this, we have to add selection rules for resolving contradictions, priority hierarchies for 
choosing between incompatible statements, and the like. A simple example of such a 



scheme is described in Bertram Raphael's 1964 MIT PhD dissertation.  Here is an 
example of a dialog with that program: 
 
!  EVERY BOY IS A PERSON 
(I UNDERSTAND) 
!    A FINGER IS PART OF A HAND 
(I UNDERSTAND) 
!       EACH PERSON HAS TWO HANDS 
THE ABOVE SENTENCE IS AMBIGUOUS !! PLEASE REPHRASE IT) 
!        THERE ARE TWO HANDS ON EACH PERSON 
(I UNDERSTAND) 
!       HOW MANY FINGERS DOES JOHN HAVE? 
(I DON'T KNOW WHETHER FINGER IS PART OF JOHN) 
!  JOHN IS A BOY 
(I UNDERSTAND) 
!    HOW MANY FINGERS DOES JOHN HAVE? 
(HOW MANY FINGERS PER HAND?) 
!   EVERY HAND HAS 5 FINGERS) 
(I UNDERSTAND) 
!        HOW MANY FINGERS DOES JOHN HAVE? 
(THE ANSWER IS 10) 
!     HOW MANY AUTOMOBILES DOES JOHN HAVE? 
THE ABOVE SENTENCE IS AMBIGUOUS. PLEASE RE-PHRASE IT) 
!      WHO IS PRESIDENT OF THE UNITED STATES?) 
(STATEMENT FORM NOT RECOGNIZED) 
! THE B0Y IS JUST TO THE LEFT OF THE TABLE 
(G02840 IS A TABLE) 
(I UNDERSTAND) 
!      THE LAMP IS JUST TO THE LEFT OF THE TABLE 
(G02841 IS A LAMP) 
(THE ABOVE STATEMENT IS IMPOSSIBLE) 
! THE TABLE IS TO THE RIGHT OF THE CHAIR 
(G02842 IS A CHAIR) 
(I UNDERSTAND) 
!        WHAT IS THE RELATIVE POSITION OF A PERSON? 
(THE LEFT-TO-RIGHT ORDER IS AS FOLLOWS) 
(CHAIR BOY TABLE)) 
 
Raphael's knowledge-collecting, question-answering system shows how it gives higher 
priority to particular facts when they conflict with general principles. This "Exception 
Principle" is, of course, a rather simple-minded way to resolve contradictions, and it can 
be only used when there is a clear difference in level of generality between the 
statements. When they are on the same level, the program simply rejects the later 
statement, as seen here: 
 
! THERE ARE 5 FINGERS ON EVERY HAND) 



(I UNDERSTAND) 
!       THERE ARE TWO HANDS ON A PERSON 
(I UNDERSTAND) 
!  A BOY IS A PERSON 
(I UNDERSTAND) 
!        TOM IS A BOY 
(I UNDERSTAND) 
!     DICK IS A BOY 
(I UNDERSTAND) 
!    HARRY IS A BOY 
(I UNDERSTAND) 
!   TOM HAS NINE FINGERS 
(THE ABOVE SENTENCE IS AMBIGUOUS !! BUT I ASSUME (HAS) MEANS (HAS AS 
PARTS)) 
(I UNDERSTAND) 
! DICK HAS ONE HAND 
(THE ABOVE SENTENCE IS AMBIGUOUS !! BUT I ASSUME (HAS) MEANS (HAS AS 
PARTS)) 
(I UNDERSTAND) 
!    HOW MANY FINGERS DOES TOM HAVE? 
(THE ANSWER IS 9) 
!       HON MANY FINGERS DOES DICK HAVE? 
(THE ANSWER IS 5) 
!      HOW MANY FINGERS DOES HARRY HAVE? 
(THE ANSWER IS 10) 
!    HOW MANY FINGERS DOES JOE HAVE? 
(I DON¹T KNOW WHETHER FINGER IS PART OF JOE) 
 
 But of course Raphael could have written some other priority rule. Incidentally, the 
program's statement, "The above sentence is ambiguous..." concerns the possibility that 
the word "has" might mean either "has as a part" or "owns. "  Raphael's program usually 
guesses correctly by a study of whether the entities in question are already known to own 
things, or to be parts of things, etc. I will describe this later in more detail. Raphael's 
demonstration that such "contextual" decisions can be programmed, illustrates a more 
general point, or rather, shows a different and healthier attitude toward programs than the 
"nothing but" approach. We will therefore try to explain some of these better ways to 
think about programs. 
 
 (1) A PROGRAM AS A SEQUENCE OF INSTRUCTIONS TO BE OBEYED. 
 
The most common and simple-minded view is that a computer program is a sequence of 
clear-cut operations to be performed on some data. Let's take a simple example of a 
program: suppose that X is a number given as input: 
 
START:   SET R = 1 
LOOP:  SET S = X/R 



SET T=R+S 
SET R = T/2 
SET U = R x R 
SET V = X - U 
IF |V| > .001, GO TO LOOP 
ELSE PRINT V 
 
This program (attributed to Isaac Newton) will compute an approximation to the square 
root of X. At each line in the program it is perfectly clear what is the current status of 
things, and what is to be done next. Of course, it requires a mathematical analysis, to 
show that the sequence of situations so developed will eventually lead to an acceptable 
value of R, and terminate the computation.' So there is no great harm in thinking of these 
statements as a sequence of steps. The "GO TO" instruction might be considered to be a 
super-abbreviation for several more copies of the "main loop." Of course, until the 
analysis is made, one should think of the program as an expression of a useful but poorly 
understood idea. 
 
(2) A PROGRAM AS A COURT OF LAW 
 
In Raphael's program, it has to be decided whether "has" means "owns" or "has as parts" 
when a statement of the form "x has y" is encountered: 
 
!   JOHN IS A PERSON) 
(I UNDERSTAND) 
!        DICK IS A PERSON) 
(I UNDERSTAND) 
!        A CHAIN IS PART OF A BICYCLE 
(I UNDERSTAND) 
!     THE POWER-SAW HAS A CHAIN 
(THE ABOVE SENTENCE IS AMBIGUOUS !! BUT I ASSUME (HAS) MEANS (HAS AS 
PARTS)) 
 (I UNDERSTAND) 
!   JOHN OWNS A CHAIN 
(I UNDERSTAND) 
!        DICK HAS A CHAIR 
(THE ABOVE SENTENCE IS AMBIGUOUS !! BUT I ASSUME (HAS) MEANS (HAS AS 
PARTS)) 
!   THE CUCKOO-CLOCK HAS A CHAIN 
(THE ABOVE SENTENCE IS AMBIGUOUS !! PLEASE REPHRASE IT) 
 
The problem, when recognized, is transmitted to a part of the program that is able to 
review all that has happened before. This sub-program makes its decision on the 
following basis: 
 
(1) Is y already known to be part of some other thing?  Or is y a member of some set 
whose members are known to be parts of something? 



(2) Is y known to be owned by something, or is it a member of some set whose members 
are known to be owned by something? 
(3) If exactly one of (1) or (2) is true, make the choice in the corresponding direction. If 
neither holds, give up and ask for more information. If both are true, then consider the 
further possibilities at (4) below. (Thus the program uses evidence about how previously 
acquired information has been incorporated into its "model" of the world.) 
(4) If we get to this point, then y is known already to be involved in being part of 
something and in being owned and we need a finer test.  
 
Let U1 and U2 be the "something" or the "some set" that we know exists, respectively, in 
the answers to questions (1) and (2). These depend on- y. We now ask: is x a member of, 
or a subject of U1 or U2? If neither, we give up. If one, we choose the corresponding 
result-"part of" or "owns." If both, we again give up and ask for more information. As 
Raphael says: 
 
"These criteria are simple, yet they are sufficient to enable the program to make quite 
reasonable decisions about the intended purpose in various sentences of the ambiguous 
word "has." Of course, the program can be fooled into making mistakes, e.g., in case the 
sentence, "Dick has a chain," had been presented before the sentence, "John owns a 
chain," in the above dialogue. However, a human being exposed to a new word in a 
similar situation would make a similar error. The point here is that it is feasible to 
automatically resolve ambiguities in sentence meaning by referring to the descriptions of 
the words in the sentence-descriptions which can automatically be created through 
proper prior exposure to unambiguous sentences." 
 
Thus, the program is instructed to attempt to search though its collection of prior 
knowledge, to find whether x and y are related, if at all, more closely in one or the other 
way. This "part" of the program is best conceived of as a little trial court, or as an 
evidence-collecting and evidence-weighing procedure. It is not good to think of it as a 
procedure directly within a pre-specified sequence of problem solving, but rather as an 
appeal court to consult when the program encounters an inconsistency or ambiguity. Now 
when we write a large program, with many such courts, each capable if necessary of 
calling upon others for help, it becomes meaningless to think of the program as a 
"sequence." Even though the programmer himself has stated the "legal" principles which 
permit such "appeals," he may have only a very incomplete understanding of when and 
where in the course of the program's operation these procedures will call on each other. 
And for a particular "court," he has only a sketchy idea of only some of the circumstances 
that will cause it to be called upon. In short, once past the beginner level, programmers 
do not simply write 'sequences of instructions'.  Instead, they write for the individuals of 
little societies or processes.  For try as we may, we rarely can fully envision, in advance, 
all the details of their interactions. For that, after all, is why we need computers. 
 
(3) A PROGRAM AS A COLLECTION OF STATEMENTS OF ADVICE 
 
The great illusion shared not only by all terrified humanists but also by most computer 
"experts," that programming is an inherently precise and rigid medium of expression, is 



based on an elementary confusion between form and content. If poets were required to 
write in units of fourteen lines, it wouldn't make them more precise; if composers had to 
use all twelve tones, it wouldn't constrain the overall forms; if designers had to use only 
fourth order surfaces no -one would notice it much! It is humorous, then, to find such 
unanimity about how the rather stiff grammar of (the older) programming language 
makes for precision in describing processes. It's perfectly true that you have to be very 
precise in your computer grammar (syntax) to get your program to run at all. No spelling 
or punctuation errors are allowed! But it's perfectly false that this makes you have a 
precise idea of what your program will do. In FORTRAN, if you want your program to 
call upon some already written procedure, you have to use one of the fixed forms like 
"GO TO." You can't say "USE," or "PROCEED ON TO," etc., so the syntax is stiff. But, 
you can "GO TO" almost anything, so the content is free. 
A worse fallacy is to assume that such stiffness is because of the computer! It's because 
of the programmers who specified the language! In Bobrow's STUDENT program, you 
could type once and for all, if you wish, "USE ALWAYS MEANS GO TO" and in 
simple situations it would then allow you to use "USE" instead of "GO T0." This is, of 
course, a trivial example of flexibility, but it is a point that most people don't appreciate: 
FORTRAN's stiffness is, if anything, derived from the stiffness superstition, not an 
instance of some stiffness fact! 
For an example of a modern system with more flexibility, a programming language called 
PILOT, developed by Warren Teitelman (Ph.D. dissertation, MIT, 1966), allows the 
programmer to make modifications both in his programs and in the language itself, by 
external statements in the (current version of) the language. We can often think of these 
as "advice" rather than as "program," because they are written at odd times, and are 
usually conditionally applied in default situations, or as a consequence of previous 
advice. An example is the following typed in while developing a program to solve 
problems like the well-known "missionaries and cannibals" dilemma - the one with the 
boat that holds only two people, etc: 
 
Tell progress, if m is a member of side-1 and m is a member of side-2 and (countq side-1 
m) is not equal to (countq side-1 c), then quit. (An earlier collection of advice statements 
to the input system has been used to produce the reasonably humanoid input syntax.) 
 
The program is a heuristic search that tries various arrangements and moves, and prefers 
those that make "progress" toward getting the people across the river. Teitelman writes 
the basic program first. But the missionaries get eaten, and the above "advice" says to 
"modify the progress-measuring part of the program to reject moves that leave unequal 
numbers of missionaries and cannibals on the sides of the river." As Teitelman says: 
 
This gives the eating conditions to PROGRESS. It is not sufficient to simply count and 
compare, because when all of the cannibals are on one side with no missionaries, they do 
outnumber the missionaries 3 to 0. However, nobody gets eaten. 
 
The point, however, is not in the relaxation of syntax restrictions, but in the advice-like 
character of the modification just made in the program. The "tell progress" statement can 
be made without knowing very much about how "progress" works already or where it lies 



in the "program." It may already be affected by other advice, and one might not have a 
clear idea of when the new advice will be used and when it will be ignored. Some other 
function may have been modified so that, in certain situations, "progress" won't get to 
evaluate the situation at all, and someone might get eaten anyway. If that happened, the 
outsider would try to guess why. 
 
He would have the options (1) of thoroughly understanding the existing program and 
"really fixing" the trouble, or (2) of entering anew advice statement describing what he 
imagines to be the defective situation and telling the program not to move the missionary 
into the position of being eaten. When a program grows in power by an evolution of 
partially-understood patches and fixes, the programmer begins to lose track of internal 
details and can no longer predict what will happen‹and begins to hope instead of know, 
watching the program as though it were an individual of unpredictable behavior. 
 
This is already true in some big programs, but as we enter the era of multiple-console 
computers, it will soon be much more acute. With time-sharing, large heuristic programs 
will be developed and modified by several programmers, each testing them on different 
examples from different consoles and inserting advice independently. The program will 
grow in effectiveness, but no one of the programmers will understand it all. (Of course, 
this won't always be successful-the interactions might make it get worse, and no one 
might be able to fix it again!) Now we see the real trouble with statements like "it only 
does what its programmer told it to do." There isn't any one programmer. 
 
LATITUDE OF EXPRESSION AND SPECIFICITY OF IDEAS 
 
Finally we come to the question of what to do when we want to write a program but our 
idea of what is to be done, or how to do it, is incompletely specified. The non sequitur 
that put everyone off about this problem is very simple: 
 
Major Premise: If I write a program it will do something particular, for every program 
does something definite. 
Minor Premise: My idea is vague. I don't have any particular result in mind. 
Conclusion: Ergo, the program won't do what I want. 
 
So, everyone thinks, programs aren't expressive of vague ideas. 
 
There are really two fallacies. First, it isn't enough to say that one doesn't have a 
particular result in mind. Instead, one has an (ill-defined) range of acceptable 
performances, and would be delighted if the machine's performance lies in the range. The 
wider the range, then, the wider is one's latitude in specifying the program. This isn't 
necessarily nullified, even when one writes down particular words or instructions, for one 
is still free to regard that program as an instance.  In this sense, one could consider a 
particular written-down story as an instance of the concept that still may remain 
indefinite in the author's mind. 
 
This may sound like an evasion, and in part it is. The second fallacy turns around the 



assertion that I have to write down a particular process. In each domain of uncertainty 1 
am at liberty to specify (instead of particular procedures) procedure-generators, selection 
rules, courts of advice concerning choices, etc. So the behavior can have wide ranges-it 
need never twice follow the same lines, it can be made to cover roughly the same latitude 
of tolerance that lies in the author's mind. 
 
At this point there might be a final objection: does it lie exactly over this range? 
Remember, I'm not saying that programming is an easy way to express poorly defined 
ideas! To take advantage of the unsurpassed flexibility of this medium requires 
tremendous skill-technical, intellectual, and esthetic. To constrain the behavior of a 
program precisely to a range may be very hard, just as a writer will need some skill to 
express just a certain degree of ambiguity. A computer is like a violin. You can imagine a 
novice trying first a phonograph and then a violin. The latter, he says, sounds terrible. 
That is the argument we have heard from our humanists and most of our computer 
scientists. Computer programs are good, they say, for particular purposes, but they aren't 
flexible. Neither is a violin, or a typewriter, until you learn how to use it. 
 


