TITLE: Some Thoughts on "Perlis Languages" AUTHOR: Eugene Wallingford DATE: August 18, 2011 3:52 PM DESC: ----- BODY: Alan Perlis Fogus recently wrote a blog entry, Perlis Languages, that has traveled quickly through parts of software world. He bases his title on one of Alan Perlis's epigrams: "A language that doesn't affect the way you think about programming is not worth knowing." Long-time Knowing and Doing readers may remember this quote from my entry, Keeping Up Versus Settling Down. If you are a programmer, you should read Fogus's article, which lists a few languages he thinks might change how you think about programming. There can be no single list of Perlis languages that works for everyone. Perlis says that a language is worth knowing if it affects how you think about programming. That depends on you: your background, your current stage of development as a programmer, and the kind of problems you work on every day. As an example, in the Java world, the rise of Scala and Clojure offered great opportunities for programmers to expand their thinking about programming. To Haskell and Scheme programmers, the opportunity was much smaller, perhaps non-existent. The key to this epigram is that each programmer should be thinking about her knowledge and on the look out for languages that can expand her mind. For most of us, there is plenty of room for growth. We tend to work in one or two styles on a daily basis. Languages that go deep in a different style or make a new idea their basic building block can change us. That said, some languages will show up lots of peoples' Perlis lists, if only because they are so different from the languages most people know and use on a daily basis. Lisp is one of the languages that used to be a near universal in this regard. It has a strangely small and consistent syntax, with symbols as first-order objects, multiple ways to work with functions, and macros for extending the language in a seamless way. With the appearance of Clojure, more and more people are being exposed to the wonders of Lisp, so perhaps won't be on everyone's Perlis list in 10 years. Fogus mentions Clojure only in passing; he has written one of the better early Clojure books, and he doesn't want to make a self-serving suggestion. I won't offer my own Perlis list here. This blog often talks about languages that interest me, so readers have plenty of chances to hear my thoughts. I will add my thoughts about two of the languages Fogus mentions in his article. Joy. *Love* it! It's one of my favorite little languages, and one that remains very different from what most programmers know. Scripting languages have put a lot of OOP and functional programming concepts before mainstream programmers across the board, but the idea of concatenative programming is still "out there" for most. Fogus suggests the Forth programming language in this space. I cannot argue too strongly against this and have explained my own fascination with it in a previous entry. Forth is very cool. Still, I prefer Joy as a first step into the world of concatenative programming. It is clean, simple, and easy to learn. It is also easy to write a Joy interpreter in your favorite language, which I think is one of the best ways to grok a language in a deep way. As I mentioned in the Forth entry linked above, I spent a few months playing with Joy and writing an interpreter for it while on sabbatical a decade ago. If you play with Joy and like it, you may find yourself wanting more than Joy offers. Then pick up Forth. It will not disappoint you. APL. Fogus says, "I will be honest. I have never used APL and as a result find it impenetrable." Many things are incomprehensible before we try them. (A student or two will be telling me that Scheme is incomprehensible in the next few weeks...) I was fortunate to write a few programs in APL back in my undergrad programming languages course. I'm sure if I wrote a lot of APL it would become more understandable, but every time I return to the language, it is incomprehensible again to me for a while. David Ungar told one of my favorite APL stories at OOPSLA 2003, which I mentioned in my report on his keynote address. The punchline of that story fits very well with the theme of so-called Perlis languages: "They could have done the same thing [I] did in APL -- but they didn't think of it!" There are modern descendants of APL, but I still think there is something special about the language's unique character set. I miss the one-liners consisting or five or twenty Greek symbols, punctuation, and numbers, which accomplished unfathomable tasks such as implementing a set of accounting books. I do second Fogus's reason for recommending APL despite never having programmed in it: creator Kenneth Iverson's classic text, A Programming Language. It is an unusually lucid account of the design of a programming language -- a new language, not an adaptation of a language we already know. Read it. I had the wonderful opportunity to meet Iverson when he spoke at Michigan State in the 1980s, as described in my entry on Iverson's passing. ... So, I encourage you to follow the spirit of Fogus's article, if not its letter. Find the languages that can change how you think, and learn them. I begin helping a new set of students on this path next week, when we begin our study of Scheme, functional programming, and the key ideas of programming languages and styles. -----