TITLE: StrangeLoop: Exercises in Programming Style AUTHOR: Eugene Wallingford DATE: October 07, 2013 12:07 PM DESC: ----- BODY:

[My notes on StrangeLoop 2013: Table of Contents]

Crista Lopes
I had been looking forward to Crista Lopes's StrangeLoop talk since May, so I made sure I was in the room well before the scheduled time. I even had a copy of the trigger book in my bag. Crista opened with something that CS instructors have learned the hard way: Teaching programming style is difficult and takes a lot of time. As a result, it's often not done at all in our courses. But so many of our graduates go into software development for the careers, where they come into contact with many different styles. How can they understand them -- well, quickly, or at all? To many people, style is merely the appearance of code on the screen or printed. But it's not. It's more, and something entirely different. Style is a constraint. Lopes used images of a few stylistic paintings to illustrate the idea. If an artist limits herself to pointillism or cubism, how can she express important ideas? How does the style limit the message, or enhance it? But we know this is true of programming as well. The idea has been a theme in my teaching for many years. I occasionally write about the role of constraints in programming here, including Patterns as a Source of Freedom, a few programming challenges, and a polymorphism challenge that I've run as a workshop. Lopes pointed to a more universal example, though: the canonical The Elements of Programming Style. Drawing on this book and other work in software, she said that programming style ... For me, the last bullet ties back most directly to idea of style as constraint. A language makes some things easier to express than others. It can also make some things harder to express. There is a spectrum, of course. For example, some OO languages make it easy to create and use objects; others make it hard to do anything else! But the language is an enabler and enforcer of style. It is a proxy for style as a constraint on the programmer. Back to the talk. Lopes asked, Why is it so important that we understand programming style? First, a style provides the reader with a frame of reference and a vocabulary. Knowing different styles makes us a more effective consumers of code. Second, one style can be more appropriate for a given problem or context than another style. So, knowing different styles makes us a more effective producers of code. (Lopes did not use the producer-consumer distinction in the talk, but it seems to me a nice way to crystallize her idea.)
the cover of Raymond Queneau's Exercises in Style
The, Lopes said, I came across Raymond Queneau's playful little book, "Exercises in Style". Queneau constrains himself in many interesting ways while telling essentially the same story. Hmm... We could apply the same idea to programming! Let's do it. Lopes picked a well-known problem, the common word problem famously solved in a Programming Pearls column more than twenty-five years. This is a fitting choice, because Jon Bentley included in that column a critique of Knuth's program by Doug McIlroy, who considered both engineering concerns and program style in his critique. The problem is straightforward: identify and print the k most common terms that occur in a given text document, in decreasing order. For the rest of the talk, Lopes presented several programs that solve the problem, each written in a different style, showing code and highlighting its shape and boundaries. Python was her language of choice for the examples. She was looking for a language that many readers would be able to follow and understand, and Python has the feel of pseudo-code about it. (I tell my students that it is the Pascal of their time, though I may as well be speaking of hieroglyphics.) Of course, Python has strengths and weaknesses that affect its fit for some styles. This is an unavoidable complication for all communication... Also, Lopes did not give formal names to the styles she demonstrated. Apparently, at previous versions of this talk, audience members had wanted to argue over the names more than the styles themselves! Vowing not to make that mistake again, she numbered her examples for this talk.
That's what programmers do when they don't have good names.
In lieu of names, she asked the crowd to live-tweet to her what they thought each style is or should be called. She eventually did give each style a fun, informal name. (CS textbooks might be more evocative if we used her names instead of the formal ones.) I noted eight examples shown by Lopes in the talk, though there may have been more: Lopes said that she hopes to produce solutions using a total of thirty or so styles. She asked the audience for help with one in particular: logic programming. She said that she is not a native speaker of that style, and Python does not come with a logic engine built-in to make writing a solution straightforward. Someone from the audience suggested she consider yet another style: using a domain-specific language. That would be fun, though perhaps tough to roll from scratch in Python. By that time, my own brain was spinning away, thinking about writing a solution to the problem in Joy, using a concatenative style. Sometimes, it's surprising just how many programming styles and meaningful variations people have created. The human mind is an amazing thing. The talk was, I think, a fun one for the audience. Lopes is writing a book based on the idea. I had a chance to review an early draft, and now I'm looking forward to the finished product. I'm sure I'll learn something new from it. -----