TITLE: Looking Back to Chris Ford's StrangeLoop 2015 Talk AUTHOR: Eugene Wallingford DATE: June 27, 2016 2:12 PM DESC: ----- BODY: StrangeLoop 2015 is long in the books for most people, but I occasionally still think about some of the things I learned there. Chris Ford's recent blog post reminded me that I had a draft about his talk waiting to be completed and posted. Had I published this post closer to the conference, I would have called it Kolmogorov Music: Compression and Understanding. (This is the second follow-up post about a StrangeLoop 2015 talk that is still on my mind. The previous follow-up was about Peter Alvaro's talk on languages and distributed systems.)

the opening screen for the Kolmogorov Music talk


Chris Ford stepped the podium in front of an emacs buffer. "Imagine a string of g's," he said, "infinitely long, going in both directions." This is an infinite string, he pointed out, with an 11-word description. That's the basic idea of Kolmogorov complexity, and the starting point for his talk. I first read about Kolmogorov complexity in a couple of papers by Gregory Chaitin that I found on the early web back in the 1990s. It fascinated me then, and I went into "Kolmogorov Music", Ford's talk, with high hopes. It more than delivered. The talk was informative, technically clear, and entertaining. Ford uses Clojure for this work in order to write macros. They allow him to talk about code at two levels: source and expansion. The source macro is his description of some piece of music, and the expansion is the music itself, "executable" by an interpreter. He opened by demo'ing some cool music, including a couple of his own creations. Then he began his discussion of how complex a piece of music is. His measure of complexity is the ratio of the length of the evaluated data (the music) to the length of the macro (the program that generates it). This means that complexity is relative, in part, to the language of expression. If we used a language other than Clojure, the ratios would be different. Once we settle on a programming language, we can compare the relative complexity of two pieces of music. This also gives rise to cool ideas such as conditional complexity, based on the distance between the programs that encode two pieces of music. Compression algorithms do something quite similar: exploit our understanding of data to express it in fewer bytes. Ford said that he based his exploration on the paper Analysis by Compression by David Meredith, a "musicologist with a computational bent". Meredith thinks of listening to music as a model-building process that can be described using algorithms. Programs have more expressive power than traditional music notation. Ford gave as an example clapping music that falls farther and farther behind itself as accompaniment continues. It's much easier to write this pattern using a programming language with repetition and offsets than using musical notation. Everything has been cool so far. Ford pushed on to more coolness. A minimalist idea can be described briefly. As Borges reminds us in The Library of Babel, a simple thing can contain things that are more complex than itself. Ford applied this idea to music. He recalled Carl Sagan's novel Contact, in which the constant pi was found to contain a hidden message. Inspired by Sagan, Ford looked to the Champernowne constant, a number created by concatenating all integers in succession -- 0.12345678910111213141516..., and turned it into music. Then he searched it for patterns. Ford found something that sounded an awful lot like "Blurred Lines", a pop hit by Robin Thicke in 2013, and played it for us. He cheekily noted that his Champernowne song infringes the copyright on Thicke's song, which is quite humorous given the controversial resemblance of Thicke's song to "Got to Give It Up", a Marvin Gaye tune from 1977. Of course, Ford's song is infinitely long, so it likely infringes the copyright of every song ever written! The good news for him is that it also subsumes every song to be written in the future, offering him the prospect of a steady income as an IP troll. Even more than usual, my summary of Ford's talk cannot possibly do it justice, because he shows code and plays music! Let me echo what was a common refrain on Twitter immediately after his talk at StrangeLoop: Go watch this video. Seriously. You'll get to see him give a talk using only emacs and a pair of speakers, and hear all of the music, too. Then check out Ford's raw material. All of his references, music, and code are available on his Github site. After that, check out his latest blog entry. More coolness. -----