TITLE: Doing Concatenative Programming in a Spreadsheet AUTHOR: Eugene Wallingford DATE: June 17, 2020 3:53 PM DESC: ----- BODY:
a humble spreadsheet cell
It's been a long time since I was excited by a new piece of software the way I was excited by Loglo, Avi Bryant's new creation. Loglo is "LOGO for the Glowforge", an experimental programming environment for creating SVG images. That's not a problem I need to solve, but the way Loglo works drew me in immediately. It consists of a stack programming language and a set of primitives for describing vector graphics, integrated into a spreadsheet interface. It's the use of a stack language to program a spreadsheet that excites me so much. Actually, it's the reverse relationship that really excites me: using a spreadsheet to build and visualize a stack-based program. Long-time readers know that I am interested in this style of programming (see Summer of Joy for a post from last year) and sometimes introduce it in my programming languages course. Students understand small examples easily enough, but they usually find it hard to grok larger programs and to fully appreciate how typing in such a language can work. How might Loglo help? In Loglo, a cell can refer to the values produced by other cells in the familiar spreadsheet way, with an absolute address such as "a1" or "f2". But Loglo cells have two other ways to refer to other cell's values. First, any cell can access the value produced by the cell to its left implicitly, because Loglo leaves the result of a cell's computation sitting on top of the stack. Second, a cell can access the value produced by the cell above it by using the special variable "^". These last two features strike me as a useful way for programmers to see their computations grow over time, which can be an even more powerful mode of interaction for beginners who are learning this programming style. Stack-oriented programming of this sort is concatenative: programs are created by juxtaposing other programs, with a stack of values implicitly available to every operator. Loglo uses the stack as leverage to enable programmers to build images incrementally, cell by cell and row by row, referring to values on the stack as well as to predecessor cells. The programmer can see in a cell the value produced by a cumulative bit of code that includes new code in the cell itself. Reading Bryant's description of programming in Loglo, it's easy to see how this can be helpful when building images. I think my students might find it helpful when learning how to write concatenative programs or learning how types and programs work in a concatenative language. For example, here is a concatenative program that works in Loglo as well as other stack-based languages such as Forth and Joy:
 2 3 + 5 * 2 + 6 / 3 /
Loglo tells us that it computes the value 1.5:
a stack program in Loglo
This program consists of eleven tokens, each of which is a program in its own right. More interestingly, we can partition this program into smaller units by taking any subsequences of the program:
 2 3 + 5 *   2 + 6 /   3 /
 ---------   -------   ---
These are the programs in cells A1, B1, and C1 of our spreadsheet. The first computes 25, the second uses that value to compute 4.5, and the third uses the 4.5 to compute 1.5. Notice that the programs in cells B1 and C1 require an extra value to do their jobs. They are like functions of one argument. Rather than pass an argument to the function, Loglo allows it to read a value from the stack, produced by the cell to its left.
a partial function in Loglo
By making the intermediate results visible to the programmer, this interface might help programmers better see how pieces of a concatenative program work and learn what the type of a program fragment such as 2 + 6 / (in cell B1 above) or 3 / is. Allowing locally-relative references on a new row will, as Avi points out, enable an incremental programming style in which the programmer uses a transformation computed in one cell as the source for a parameterized version of the transformation in the cell below. This can give the novice concatenative programmer an interactive experience more supportive than the usual REPL. And Loglo is a spreadsheet, so changes in one cell percolate throughout the sheet on each update! Am I the only one who thinks this could be a really cool environment for programmers to learn and practice this style of programming? Teaching concatenative programming isn't a primary task in my courses, so I've never taken the time to focus on a pedagogical environment for the style. I'm grateful to Avi for demonstrating a spreadsheet model for stack programs and stimulating me to think more about it. For now, I'll play with Loglo as much as time permits and think more about its use, or use of a tool like it, in my courses. There are couple of features I'll have to get used to. For one, it seems that a cell can access only one item left on the stack by its left neighbor, which limits the kind of partial functions we can write into cells. Another is that named functions such as rotate push themselves onto the stack by default and thus require a ! to apply them, whereas operators such as + evaluate by default and thus require quotation in a {} block to defer execution. (I have an academic's fondness for overarching simplicity.) Fortunately, these are the sorts of features one gets used to whenever learning a new language. They are part of the fun. Thinking beyond Loglo, I can imagine implementing an IDE like this for my students that provides features that Loglo's use cases don't require. For example, it would be cool to enable the programmer to ctrl-click on a cell to see the type of the program it contains, as well as an option to see the cumulative type along the row or built on a cell referenced from above. There is much fun to be had here. To me, one sign of a really interesting project is how many tangential ideas flow out of it. For me, Loglo is teeming with ideas, and I'm not even in its target demographic. So, kudos to Avi! Now, back to administrivia and that database course... -----