
Patterns for Selection
Version 2

Joseph Bergin

This paper presents a simple pattern language (as a pattern, actually), to use
in writing code that requires selecting from alternative actions.

There are four kinds of patterns here: Selection patterns proper, Strategy
patterns, Auxiliary patterns, and some Stylistic patterns.

The Selection patterns are:
Whether or Not
Alternative Action
Range of Possibility
Sequential Choice
Unrelated Choice
Independent Choice

The strategy patterns are
Short Case First
Default Case First

The auxiliary patterns are:
Positive Condition
Function for Complex Condition
Function for Complex Action

You are at a point in a program at which one of two or more different actions
must be performed. You must select between the alternatives.

Whether or Not

(Also known as: Guarded Action, Guarded Command).

You are in a situation in which some action may be appropriate or
inappropriate depending on some testable condition.

For example: in a power plant simulation, it may be necessary to shut down a
generator when it overheats.

if (measuredHeat() > subBoilThreshold)
{ shutDownGenerator();
}

You don't need to repeat the action, only to decide whether or not it should be
done. There are no other actions to do (only) when this one is not done. You
want to write simply understood code.

Therefore, use an IF statement without an ELSE part, expressing the test
condition positively if possible.

IF <condition>
<action>

Note that in most languages there is an if statement intended for precisely this
s i tuat ion.

If, instead, you need to repeat the action, see Patterns for Loops.

Al ternat ive Act ion

You are in a situation in which one of exactly two actions is appropriate
depending on some testable condition.

When the condition holds you want to do one action, and when it does not hold
you want to do some different action. There are exactly two actions and exactly
one condition, which may be true or false.

For example a student may pass or fail an exam depending on the value of the
numeric grade.

if (numericGrade > 60)
{ output (“passing”);
}
else
{ output(“failing”);
}

(due to Rick Mercer)

Therefore, use a single IF statement with an ELSE part, expressing the test in
positive terms.

IF <condition>
<one action>

ELSE
<another action>

If you try to apply Whether or Not (twice) to this case you will find yourself
needing to write the negation of the condition.

if (numericGrade > 60)
{ output (“passing”);
}
if (numericGrade <= 60)
{ output(“failing”);
}

This is both wasteful of computer time and very error prone. Also, if problem
changes a bit in the future and you change one of the conditions, it is easy to
forget to change the other. Alternative Action makes it unnecessary to repeat
the condition for the else part. See Unrelated Choice.

Posi t ive Condi t ion

You are applying Alternative Action and are wondering how to define the
condition and lay out the IF-ELSE statement.

Most people can more effectively read a positive statement than a negative
one. You want your code to be as readable as possible.

For example, suppose you have a robot simulation in which the robot must
move but must also contend with obstructions in the path. Suppose you have a
boolean test as a primitive in a robot language:

boolean frontIsBlocked();

Suppose that you want to move if possible, but turn Left instead if it is
impossible to move forward. The following are equivalent:

if(frontIsBlocked())
turnLeft();

else
move();

if (! frontIsBlocked())
move();

else
turnLeft();

The first version is more readable and is preferred. It expresses a positive
condi t ion .

Therefore, when writing conditions, express them positively whenever
possible.

Function for Complex Condition

You are applying Whether or Not or Alternative Action and trying to write the
condition. You realize that the condition is complex.

Most people find it very difficult to read, understand, and remember complex
Boolean conditions.

It may be desirable to write a function reversing the logical sense of a given
test to apply Express Positive Condition in all circumstances. For example, in
the above example, one could write the function

boolean frontIsClear() { return ! frontIsBlocked(); }

and use this in place of ! frontIsBlocked(). This makes it possible to Express
Positive Condition even when using other selection patterns than Alternative
Act ion.

Therefore, write a Boolean function to capture the condition and call this
function in the if or if-else statement. Functions that return Boolean values
are normally called Predicates.

The name of the function should be easy to remember, should exactly express
the meaning of the condition, without expressing its details, and should do so
in a positive way.

Note that the name chosen in the above, frontIsClear, is itself expressed
positively. This is preferred over the equivalent frontIsNotBlocked.

Function for Complex Action

You are applying Whether or Not or Alternative Action and trying to lay out
the IF statement. You realize that one or more of the actions is complex.

Most people find that reading a complex action within an if distracts from the
overall flow of understanding of the program. This is because they need both
the detail of the action, to understand what it does, as well as the general idea
of the action, in order to understand the larger program that contains it.

Therefore, write a function to encapsulate the complex action(s).

This is especially effective if you can choose a good name for the action that
captures exactly the nature of the complex action. This should then become
the name of the function.

if (nextToABeeper())
pickBeeper();

else
{ …

// hundreds of statements to find the beeper
…

}

can be re cast as:

if (nextToABeeper())
pickBeeper();

else
findBeeper();

Short Case First

You are applying Alternative Action and trying to lay out the IF-ELSE
statement. One of the actions can be expressed simply in a statement or two.
One is much longer. For some reason it is not desirable to apply Function for
Complex Action.

You want your reader to be able to read and understand the code as simply as
possible. You also want the reader to be able to easily determine if this is an if
with an else or without an else.

Therefore, arrange the code so that the short case is written as the if (not the
else) part.

if (someCondition())
// aStatement

else
{ ...

// lots of statements
...

}

This will permit the reader to easily dispense with one case before forgetting
the condition that is used to choose between cases.

You may need to use Function for Complex Condition to enable this pattern.

The next patterns Range of Possibility and Sequential Choice presented below
in this language are very special purpose and they are easy to abuse. Most
often the better design is to use polymorphism in an object-oriented class
hierarchy to do the kind of choosing of alternatives that these do. A
polymorphic design will be much easier to extend and maintain. The following
techniques are needed in older programming languages, but seldom in well
written object-oriented programs.

Range of Possibi l i ty

You are thinking of applying something like Alternative Action, but you have
more than two possibilities. You must choose exactly one of several actions to
perform based on some condition.

You also have a situation in which the choices to be made depend on the
current value of a computed expression (perhaps a single variable) and that
expression has a discrete (integer) type.

You want to test the value of this expression exactly once for economy of both
execution and reading and you want to avoid inconsistency errors in the
future if the problem changes.

Therefore, use a switch statement with the expression as the test value and the
various values of that expression as the case labels.

switch (skyColor)
{ default: output("Don't know where we are."); break;

case Color.red: output("This must be Mars."); break;
case Color.blue: output("This must be Earth."); break;
case Color.green: output("This must be Moldy."); break;

}

Each case should end with break. This includes the last case. The problem may
need modification and new cases may arise. It is easiest and safest if new cases
can be added without modifying existing cases.

If a break after a case is not appropriate, so that execution should continue
through to the next case, be sure to document that fact. Thus several values of
the tested expression can result in the same action.

switch (skyColor)
{ default: output("Don't know where we are."); break;

case Color.red: // No break. Continuing.
case Color.blue: output("This must be the Sol system."); break;
case Color.green: output("This must be Moldy."); break;

}

Be sure to include a break after the last case. Chances are that the switch will
be extended in the future.

Default Case First

You are applying Range of Possibility.

The code should be readable and easily understood. It is easy to forget the
default case. The reader may want to know what happens if none of the case
labels matches the computed value of the test expression.

Therefore, consider writing the default case first so that it may be easily seen
and considered. This was shown in the above examples. Be sure to give the
default case a break, no matter where it appears.

Sequent ia l Choice

(Also known as: elsif, one of many.)

You are in a situation in which you need to choose exactly one of several
possible actions, but which action does not depend on the value of a single
expression. Instead, suppose each action depends on a separate testable
condi t ion .

You want the code layout to be pleasing to both the eye and the mind. You want
a structure that is easy to read and understand. Each action is guarded by its
own condition, and after you find one condition true you want to execute its
associated action and at that point you want to finish.

Therefore, write a sequence of IF’s, where each IF but the last has an ELSE part
that consists entirely of another IF.

int participants = myParty.size();
if (participants > 15000)
{ rentTheSuperdome();
}
else if (participants > 1500)
{ rentTheCivicCenter();
}
else if (participants > 150)
{ rentATent();
}
else
{ rentAMovie(); // default case, no party at all.
}

The formatting, with else and if on the same line, makes it clear that this is a
Sequential Choice and not a sequence of Whether or Not applications. Do not
indent the subsequent else parts. Some languages have a special keyword
(elsif) to handle this case.

Unrelated Choice

You are in a situation in which you have many actions and many conditions.
You may want to execute several of the actions if their associated conditions
are true.

The key here is that you may want to execute more than one of the actions and
each action has a condition that determines if it should be executed.

Don't get confused by the similarity to the above patterns. This is most likely
just a set of Guarded Actions that you need to apply in some order. The order
may be arbitrary or not, depending on the specific situation.

if (roofIsLeaking())
{ callRoofer();
}
if (sinkIsLeaking())
{ callPlumber();
}
if (floorIsLeaking())
{ callExcavator();
}

Independent Choice

You are in a situation in which exactly one action must be chosen, but which
action depends on several factors, not just a single one.

If the factors to be considered are independent and there are only a few such
factors (three or less) then nested IF statements may be an adequate solution.
Two factors that are independent of each other provide for four possibilities
when taken together. For example if the factors are (rectangle or not) and
(has background or not) then we get the four possibilities shown in Figure 1.
Three independent factors will similarly result in eight possibilities.

Rectangle

not a
Rectangle

Background no Background

Figure 1. Two independent choices

Another example is one in which you have two variables and you must decide
on one action depending on whether each of these variables is negative or
not. The following nested IF structure will work in this case. Here we have
chosen to consider the x variable first and then the y variable.

if(x >= 0)
{ if(y >= 0)

{ System.out.println("First quadrant");
}
else
{ System.out.println("Second quadrant");
}

}
else // x < 0
{ if(y >= 0)

{ System.out.println("Third quadrant");
}
else
{ System.out.println("Fourth quadrant");
}

}

Note that the structure of the inner IF is repeated in both parts of the outer IF ,
though the actions are not the same.

However, if we reverse the inner and outer structures we must arrange the
innermost actions differently.

if(y >= 0)
{ if(x >= 0)

{ System.out.println("First quadrant");
}
else
{ System.out.println("Third quadrant");
}

}
else
{ if(x >= 0)

{ System.out.println("Second quadrant");
}
else
{ System.out.println("Fourth quadrant");
}

}

If you have three actions instead of four, but the choice depends on two
independent factors, choose the inner and outer conditions so that one of the
inner if’s applies the same action in both cases. Then you can omit one inner
test and just apply that action. For example, suppose you are running a power
plant simulation and how much power output you get from the reactor depends
on two factors, the state of the transmission lines and the state of the reactor
itself. The following are equivalent.

if(transmissionOK())
{ if(reactorOK())

{ fullPower();
}
else
{ reducedPower();
}

}
else
{ if(reactorOK())

{ fullPower();
}

else
{ shutDown();
}

}

if(reactorOK())
{ if(transmissionOk()
{ fullPower();
{
else
{ reducedPower();
}
}
else
{ shutDown();
}

The second form has simpler structure. Of course, you may then want to write
the Short Case First.

Often it is better to apply Function for Complex Action instead of nesting
structures. To apply that pattern to Independent Choice, let each inner IF be
represented by a separate function call. You will need to write two functions to
apply this: one for the IF part of what is here the outer IF and another for the
ELSE part.

Sometimes you have several things to consider but only two possible actions.
In this case you need a compound expression to test. Apply the pattern Use
Function for Complex Condition. Write a function that returns true when one
of the required combinations of conditions is met and call this function as the
test in the IF. In the power plant situation, there may be only two choices of
action, full power and shut down. In this case some predicate will let you
choose between them, though it may represent a complex condition.

Note that it may be more readable to use compound conditions with and and o r
operators and avoid nesting. For example, the quadrant problem can be solved
using Unrelated Choice as

if(x >= 0 && y >= 0)
{ System.out.println("First quadrant");
}
if(x >= 0 && y < 0)
{ System.out.println("Second quadrant");
}
if(x < 0 && y >= 0)
{ System.out.println("Third quadrant");
}
if(x < 0 && y < 0)
{ System.out.println("Fourth quadrant");
}

However, you may then want to apply Function for Complex Condition. This
also requires executing tests done previously. If the problem changes this
entire structure needs to be reanalyzed as a whole.

Sty l is t ic Pat terns

The four patterns in this group can help you make your code more readable,
and they can also help you avoid problems in the future when a program must
be modified and updated.

One Liner

You are writing a selection structure and notice that all of the parts are short.

It is a good idea to use the horizontal as well as the vertical "real estate" of your
page, since if you can fit more on a page, the reader will need to turn fewer
pages to follow your code. Your reader also expects that what is on one line all
goes together.

Therefore, if the entire structure fits comfortably on one line, then put it on
one line.

if (numericGrade > 60) { output (“passing”);} else { output(“failing”);}

Brace All

You are writing a selection or other structure and notice that some of the
actions consist of single statements. The language doesn't require that you
write braces or other grouping symbols in this situation.

However, you recognize that programs change as the problems that they solve
change. In real programming this is a very frequent occurrence. If you have
a single statement in an action, chances are that later it may need more
sta tements .

Therefore, completely brace all statement parts in all structures when you
first write the program.

if (measuredHeat() > subBoilThreshold)
{ shutDownGenerator();
}

can be modified more easily and with less possibility for error than the
logically equivalent

if (measuredHeat() > subBoilThreshold)
shutDownGenerator();

Braces Line Up

You are writing a structured statement that requires braces or other grouping
symbols. You want your code to be as readable as possible.

When structures are nested, the indentation structure is often hard to follow.
It is especially hard when the inner structures end and the outer structure
resumes. The eye cannot always easily see what goes with what level of the
overall structure. This is one reason for Function for Complex Action, of
course .

The braces of a structure give its real intent, independent of how it is
inden ted .

Therefore, when writing brace symbols or other grouping symbols such as
parentheses, if the opening and closing symbol don't both fit on the same line,
then make them line up exactly vertically.

This stylistic pattern has been followed throughout this paper. It is somewhat
different from the style seen in most C++ and Java books, however. The more
typical style would have the opening brace at the end of the line on which it
opens and the closing brace under the keyword that indicates the structure.

if (measuredHeat() > subBoilThreshold) {
shutDownGenerator();

}

Note that when the opening brace begins a line, you can put a full statement
on that line as well, so that you don't waste vertical real estate.

Indent for Structure

You are writing a structured statement using these (or other) patterns. You
want to write readable code. In particular you want to indicate to your reader
what the individual parts of your structure are.

The eye is good at grouping things. It is probably better at this than the mind.

Therefore, the parts of a structure should be indented from the keywords and
punctuation symbols that define its structure. All of the statements at the same
level of the structure should be indented exactly the same amount.

Don't indent too much or you waste horizontal real estate. Don't indent too
little, or the eye won't see the structure. See the code fragments above for
examples of the use of this pattern.

Note. These patterns were informally discussed in a workshop at SIGCSE '99 in
New Orleans. The participants were Eugene Wallingford, Owen Astrachan, Rick
Mercer, Robert Duvall, Alyce Brady, Viera Proulx, Richard Rasala, and Kathy
Larson. I thank them for the many improvements they suggested and also for
their support.

