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Intent

A Structured Matcher is useful when making choices from a small, discrete set of
alternatives.  It decomposes a complex decision into simpler decisions about rele-
vant factors and then uses decisions about these factors to make the decision.

Example

Consider a decision support system for capital asset acquisitions (Wallingford
and Sticklen 1985).  The system helps users decide whether to purchase an asset
or lease it from another company.  Each of these alternatives leads to more speci-
fic decisions, such as whether to structure a leasing arrangement as a direct lease,
a leveraged lease, or a conditional sale.  All of these decisions depend on a num-
ber of different factors: the company’s tax rate, financing costs, financial reporting
requirements, characteristics of the market, and so on.  For example, deciding
whether to pursue a leveraged lease depends on ten factors:

• Availability of lease • Time window of opportunity
• Existence of a potential lessor • Interest rate trends
• Business form of a potential lessor • Access to debt/equity markets
• Lessor’s risk aversion • Sufficient working capital
• Nature of lessor’s creditors • Existence of an independent trustee

Decisions such as these occur in every domain.  In the capital asset acquisition
scenario, the system performs a recognition task: it determines whether a parti-
cular label applies in a given situation.  The choices facing the system are confi-
dence values for the assessment, and the parameters of the decision are the
expected features for situations that fit the category.  In other cases, the system



performs a classification task, in which the choices are the categories themselves
and the parameters of the decision are characteristics that distinguish one
category from another.

Context

You are building a system in which many different kinds of parameters play a
role in the decisions it makes.

Many software systems need to make decisions.  Often these decisions involve
the selection of one choice from a small set of alternatives, and several different
kinds of parameters affect the decision.  Many simple solutions to this kind of
problem expose the underlying trade-offs that must be made in practice.

One way to make decisions of this sort is to directly associate patterns of para-
meter values with alternatives.  For example:

If parameter 1 has value 1 and
parameter 2 has value 2 and ...
parameter n has value n,

then choose alternative I.

Each rule associates one pattern with one choice.  Making the decision involves
finding the rule whose pattern (best) matches the input data and returning its
choice.  A system that uses this technique is called a simple matcher.

Simple matching suffers from at least three serious drawbacks.  First, it is compu-
tationally intractable, even for relatively small problems.  In the capital asset
acquisition scenario, ten parameters play a role in deciding whether to structure a
lease as a leveraged lease.  Each of these parameters can take five different values.
In the worst case, a simple matcher for the leveraged lease decision would
require 510 pattern-matching rules.

Second, it has no way to represent intermediate abstractions that may play a role
in the decision.  For example, one ordinarily would not make the leveraged lease
decision in terms of the primitive input parameters.  Instead, one would
consider four higher-level factors: the feasibility of a leveraged lease, conditions
that exist on the lessor, environmental factors, and financial factors.  The input
parameters are used directly in making these intermediate decisions, which are
in turn used to make the leveraged lease decision.

Third, a simple matcher is brittle in the face of uncertain or missing data.  If a
value for one of the parameters is unavailable at run-time, any rule that matches
on the parameter will fail, even if all the rest of its parameters match perfectly.
Similarly, if a value for one of the parameters is incorrect in any way, the
matcher will not be able to match the correct rule, even if all other data match



perfectly.  So a simple matcher does not work well in environments with noise
in the data.

One solution aimed specifically at the problem of brittleness computes decisions
using a weighted sum of parameter values.  Such an approach makes the system
less dependent on the value of any particular parameter, but at two costs.  First,
the decision now resides in a combination function and threshold value, which
makes explaining the decision in terms of intermediate decisions difficult.
Second, and more critical, weighted sums cannot easily represent interactions
among parameters.  Most real problems include situations in which one para-
meter’s value overrides another, and use of a weighted sum makes it difficult to
capture this relationship.

Problem

How do you organize a system that makes choices from a small, discrete set of
alternatives in a way that is reasonably efficient and easily modified?

Any solution to this problem should bring the following forces into equilibrium:

• Making a decision should be computationally tractable in the face of many
parameters and possible values.

• The system should be able to explain its decision in terms of relevant fac-
tors, not just in terms of all factors together.

• The system should be able to capture interactions among parameters but
not be brittle in the boundary conditions.

• Systems evolve over time.  The decision-making mechanism should faci-
litate modifications to decision-making patterns.

 
• The representation of decision-making patterns should not be so far from

how humans make the decision that acquiring knowledge from domain
experts becomes problematic.

Solution

Decompose the decision into a hierarchy of sub-decisions using the Composite
pattern (Gamma et al. 1995).  Group parameters according to the sub-decisions
that they affect.  For each sub-decision, construct a simple matcher that maps the
values of its inputs—either input data or the decisions of other simple
matchers—onto a value for its decision.  The root of the hierarchy makes the
primary decision.  Interior matchers combine the decisions of matchers lower in
the hierarchy.  Matchers at the leaves of the hierarchy refer only to input data.
The result is a Structured Matcher.



» In the capital asset acquisition scenario, decompose the decision of whether to
seek a leveraged lease into four sub-decisions: feasibility, conditions on the les-
sor, general conditions, and financial factors.  The parameters Interest Rate
Trends, Access to Debt/Equity Markets , and Sufficient Working Capital play a
role in deciding whether the financial environment favors a leveraged lease.

Structure

A Structured Matcher consists of a directed, acyclic graph of simple matchers.  A
simple matcher considers either the values of sub-decisions made by other sim-
ple matchers or the values of input data.  Each data parameter feeds into only
one simple matcher.
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Figure 1.  A Class Diagram for the Structured Matcher Pattern
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A typical Structured Matcher looks like the hierarchy in Figure 2.

»   A Structured Matcher for the leveraged lease decision might look like the
hierarchy in Figure 3.



Simple Matcher

Simple MatcherSimple Matcher Simple Matcher

parameterparameter ... parameterparameter ...

Simple Matcher

parameterparameter ...

Simple Matcher

parameterparameter ...

Figure 2.  The Structure of a Structured Matcher
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Dynamics

In a Structured Matcher, problem-solving control flows top-down from its root
matcher to its leaves, and data flows bottom-up from the leaves to the root.  (See
Figure 4.)  The client requests a value for the decision from the Structured
Matcher, which delegates the task to its root simple matcher.  The root makes its
decision by requesting values for its sub-decisions whenever needed.  Matchers at
the leaves of the hierarchy request values for input data from the source of the
data.

If a simple matcher can make its decision without considering all of its para-
meters, whether input data or sub-decisions, it will.
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Figure 4.  The Dynamic Structure of a Structured Matcher
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»   In the capital asset acquisition scenario, suppose that the user would like to
know whether a leveraged lease is a good idea.  The system would send a request
to the leveraged lease Structured Matcher, which sends a request to the root
matcher in its hierarchy.  In order to make this decision, the root simple matcher



will ask some or all of its children for their values.  It would then match these
values against its rules to select its own answer, which would be returned to the
requesting client.

The reason that the root matcher might not request values from all of its
children is that, in some situations, a decision can be made on the basis of only
one or two of the input parameters.  For example, if a leveraged lease is not
feasible, the Structured Matcher can return its answer without making its other
sub-decisions.  This kind of evaluation is called short-circuit evaluation.

Implementation

To implement a Structured Matcher, perform three primary tasks:

1. Identify meaningful sub-decisions.

A sub-decision is part of the vocabulary of the domain, an abstraction of
value to practitioners in the domain.  Sub-decisions should make them-
selves apparent during the domain analysis phase of the system.  Through
recursive decomposition of decisions into sub-decisions, the structured
matcher’s hierarchy of simple of matchers will evolve.

One way to approach this task is to partition the input data parameters to
the decision along meaningful dimensions.  These dimensions differ from
domain to domain, but common criteria include causal relationship, close
interdependency, and the source of data.

As a general rule, each sub-decision should depend on between two and
five parameters.  As the number of input parameters increases, the worst-
case complexity of the matcher grows exponentially.

Likewise, the number of possible values—the size of the set from which
the matcher chooses its answer—should be kept small, ordinarily no more
than seven.  As the number of possible values increases, the complexity of
the matcher’s parent grows.  A larger set size is more acceptable when
higher-level decisions can be made on the basis of a range of values, rather
than on the basis of individual values.

»   In the leveraged lease example, decision decomposition and parameter
grouping are based on how human experts in the domain reason.  They
first determine if the arrangement is feasible by examining the availability
of leases and potential lessors.  If the arrangement is deemed not feasible, a
decision is returned.  They then determine if one or more of the potential
lessors is qualified, based on specific features of the lessors.  If no qualified
lessor exists, a decision is returned.  Finally, they consider environmental
factors and financial factors that make a leveraged lease more or less attrac-



tive.  The answer they return depends on patterns of values for these two
sub-decisions.

2. Implement each simple matcher.

Decisions on Task 1 limit the number of inputs and the number of pos-
sible output values for the matcher, which limits the potential complexity
of the decision.  As a result, the programmer has some freedom when it
comes to implementing each matcher.  Among the options available are:

• A decision tree.
• A linear combination rule.
• A set of pattern-matching rules.

A common implementation uses the Table Matcher pattern, which is not
documented in detail here. A Table Matcher consists of an ordered set of
pattern-matching rules.  To build a table matcher, identify a set of rules
that map input data patterns onto the matcher’s value set.  Group rules
according to their output value, and try to identify generalizations of the
input patterns within each group.  Use range tests on parameter values
and don’t-care matches in order to combine rules with common patterns
into single rules.  Once the set of rules is minimal and general, order the
rules in a way that seeks to balance two forces: (1) the matcher should com-
pute its answer efficiently, and (2) the matcher should consider its parame-
ters in an order that makes sense within the domain.

»   In the leveraged lease example, the table for the root matcher might
look something like Figure 5 (top of next page).

The use of don’t-care matches will make it possible for a matcher not to
consider all of its parameters in all cases, depending upon the input data
that it receives.  The last rule in the table, whose pattern consists only of
don’t-care matches, is a default rule.  If all preceding rules fail, the last rule
will match and returns a default value for the choice.

3. Determine from where simple matchers at the leaves of the acquire their
input data.

The parameters of matchers at the leaves are basic data, not the results of
sub-decisions made by other simple matchers.  Typically, the matcher will
request values for data parameters from some database or some other soft-
ware component external to the Structured Matcher.  This component
hides the matcher from the details of data acquisition, data abstraction, and
so on.  In simple cases, the simple matcher may communicate directly
with an interactive user of the system.



Figure 5.  A Table for the Root Matcher in Leveraged Lease
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»   In the capital asset acquisition system, the leveraged lease Structured
Matcher sends all requests for primitive data values to a common database
shared by all of the Structured Matchers and other components of the
system.  This both insulates the matchers from interface issues and allows
the system to acquire each piece of data only once.

You will also want to consider these secondary issues:

1. Is the hierarchy of simple matchers a strict hierarchy (a tree) or a tangled
hierarchy (a directed acyclic graph)?

Simple Matcher

Simple Matcher

Figure 6.  A Simple Tangled Hierarchy

Simple Matcher

Simple Matcher



In a tangled hierarchy, the decision of one simple matcher may serve as an
input parameter to more than one higher-level matcher.

The advantages of a tangled hierarchy lie in its reuse of existing compo-
nents within the Structured Matcher.  The disadvantage of a tangled
hierarchy lies in its potential computational cost.  If the hierarchy is
tangled, then matcher faces both exponential time complexity and expo-
nential size complexity in the worst case.  However, the worst case occurs
only when the Structured Matcher contains an exponential number of
simple matchers.  In the average case, the number of simple matchers is
linear in the number of parameters.  As a result, a Structured Matcher can
allow a considerable amount of tangling before encountering unacceptable
performance.  (Bylander et al., 1991)

2. Do simple matchers cache their answers?

If a simple matcher caches its value, then it can respond more efficiently to
future requests for its value in the same data context.  This can be
especially useful if the Structured Matcher consists of a tangled hierarchy.
A simple matcher that caches its value must provide a second way to
request its value, so that the Structured Matcher can force it to re-compute
in a new data context.

Consequences

Structured Matcher offers the following benefits:

• Computationally tractable .  By decomposing its task, a Structured Matcher
manages the potential complexity of finding a solution.  Limitations on
the number of input parameters and number of possible values mean that
exponential complexity can be constrained within small components.

• Explanation at different levels of abstraction.  By decomposing its decision
into sub-decisions, and perhaps decomposing those sub-decisions further,
a Structured Matcher provides a vocabulary of intermediate abstractions in
which to explain the system’s answer.

• Recognition of interactions among parameters.  By grouping parameters
that are related to one another, the Structured Matcher pattern localizes
interactions among parameters.  Explicit representation of such interaction
helps to reduce computational complexity and supports modification of
the system.

• Ease of modification .  Decision making is localized within simple mat-
chers.  When pattern-matching rules need to be changed or added, it is
easier to identify the relevant part of the system.  When input data para-



meters need to be modified, it is easy to identify which part of the decision
they affect.

• Facilitation of domain analysis and knowledge acquisition.  This pattern
provides not only a way of thinking about system development, it also
provides a way of thinking about domain analysis.  As decisions are recur-
sively decomposed, they introduce a vocabulary for talking about the prob-
lem, for organizing data parameters, for identifying gaps in domain under-
standing, and the like.

Structured Matcher may also impose some liabilities:

• Potential brittleness in boundary conditions.  Many of the advantages of a
Structured Matcher are predicated on the requirement that simple mat-
chers consider a small number of input parameters and select from a small
number of possible values.  Unfortunately, this feature may cause the mat-
cher to encounter boundary problems .  As noted earlier, if a value for one
of a matcher’s parameters is unavailable at run-time, the matcher may be
unable to make the correct decision, even if all the rest of its parameters
match perfectly.  More generally, this problem arises in the face of data is
that merely erroneous, say, due to noise in a data stream.

Structured Matchers are especially prone to erroneous data problems
because they operate at a coarse level of “granularity”.  If a data parameter
can take only two values (say, ‘yes’ and ‘no’), then a potentially large
number of data patterns may lie near the two boundaries between
different values.  By increasing the number of possible values of the
parameter (say, to ‘yes’, ‘maybe yes’, ‘uncertain’, ‘maybe no’, and ‘no’), the
granularity of the system becomes smaller, decreasing the chance that an
erroneous value will carry a wildly incorrect meaning.  In the interest of
computational tractability, Structured Matcher encourages relatively large
granularity, thus exposing itself to boundary problems in some situations.
In such cases, relaxing the ordinary restriction on the size of the set of
possible values may be necessary.  Done sparingly, this should not have an
inordinate impact on the computational complexity of the matcher.

Example Resolved

Using a Structured Matcher resolves the forces at play in the leveraged lease
decision.  In particular:

• Ten parameters play a role in this decision, and each parameter can take
five different values.  In the worst case, a simple matcher requires 510 ≈
10,000,000 pattern-matching rules.  But the Structured Matcher of Figure 2
requires at most 925 rules.



• The Structured Matcher can explain its answer in terms of feasibility, con-
ditions on the lessor, financial factors, and general conditions.  Decisions
for each of these can in turn be explained in terms of the relevant data
parameters.

• By grouping related parameters, this Structured Matcher pattern can capi-
talize on interactions among them.  The table in Figure 4 uses patterns
about feasibility and lessor conditions to prune unfavorable situations and
then focuses on interactions among general and financial conditions.

• Decomposing the decision into a hierarchy of sub-decisions makes the
Structured Matcher more amenable to modification, both for debugging
and for long-term maintenance.  For instance, if the laws governing the
timing and oversight of leveraged leases change, only the patterns in the
simple matcher for general conditions need to be modified.

• The same intermediate decisions that allow the Structured Matcher to ex-
plain its answer also assist in domain analysis and knowledge acquisition,
where they provide a vocabulary for talking about the leveraged lease
decision.  

Known Uses

Samuel (1967) described what is believed to be the first documented use of
Structured Matchers in his landmark paper on machine learning in a checkers-
playing program.  His signature tables  played an important role in making the
learning component of the program computationally tractable.

In the early 1980s, Chandrasekaran and his research group began to study Mycin,
the prototypical diagnostic expert system.  The result of their analysis was a set of
expert system patterns called generic tasks and MDX, a diagnostic expert system
based on these patterns.  They then generalized MDX into CSRL, a programming
language for building hierarchical classification systems.  CSRL used Structured
Matchers to make decisions about diagnostic hypotheses.  Chandrasekaran (1986)
coined the term “hypothesis matching” and documented it as an independent
technique. Finally, the group created Hyper, a programming language specifically
for writing Structured Matchers.

Commercial use of Structured Matchers in generic task-based classification sys-
tems of this era included WELDEX, a system that detected welding defects
(Mahalingham and Sharma 1985), and ROMAD, a system that did machinery
vibration analysis (Mahalingham, Sharma, et al. 1985).

Ribar (1990) described LoanProbe, a program to evaluate the collectibility of
commercial loans, used as a part of the internal audit practice at Peat Marwick,
one of the Big Six accounting firms in the United States.  LoanProbe is the most



widely documented large application of structured matching, consisting of appro-
ximately 9000 rules in thirty-three separate “knowledge bases” and interacting
with sixty external programs and two data bases.

Mockler and Dologite (1990) used a cognitive modeling technique like Structured
Matcher to teach an MBA course on strategic planning and management
decision making as part of a larger research project.  One result of this project was
that their students, business professionals working full-time in industry,
developed over 160 prototype systems using Structured Matchers.  Follow-up
surveys indicated that 28% of these systems were deployed and used by the
developers’ firms.

Mitri (1991) used candidate selection to build several systems through the Center
for International Business Education and Research at Michigan State University.
MAPS (Mitri 1995) is a more recent application, in the domain of market entry
planning.

Wallingford and Sticklen (1992) documented Acquisition, a system for planning
capital asset acquisitions, from which the running example in this paper is
drawn.  In Acquisition, Structured Matchers are used to evaluate the fitness of
each transaction type in a hierarchical classification scheme.

More recent work in the generic task community used Structured Matchers in
more diverse roles.  Wallingford (1998) documented several known uses of the
Sponsor-Selector pattern, which typically uses Structured Matchers in two roles:
resource sponsorship and resource selection.  One example is Router (Goel et al.,
1994), a robot navigation path planner that uses Structured Matchers to select
among planning methods at run-time.

Variants

QBKG.   The QBKG backgammon program (Berliner and Ackley, 1982) used a
hierarchical position evaluation function reminiscent of the Structured Matcher
pattern.  QBKG estimates the strength of a potential move by combining the
values computed for more specific features.  These values are computed from
more primitive features whose values can be assessed directly.  This approach
resembles Structured Matcher in its hierarchical abstraction of features but differs
in that it never maps feature values onto a set of discrete values.  Instead, QBKG
uses a variety of arithmetic combining functions on continuous values.  This
approach trades the advantages of Structured Matcher’s discrete representation,
including enhanced explanation capability and computational simplicity, for
more robust performance in the face of incomplete or erroneous input data.
Another drawback of this approach is that linear combination functions cannot
account for direct interactions among feature values as flexibly as discrete repre-
sentations can.



Candidate selection.  Candidate Selection (Mitri 1991) also generalizes Structured
Matcher to work with continuous values and combination mechanisms such as
weighted sums.  Mitri recognized that the robustness of QBKG’s approach in the
face of boundary conditions resulted not from its continuous representation but
from its use of a compensatory scoring mechanism that dampened the effect of
individual data items.  By incorporating a compensatory mechanism, Candidate
Selection hopes to provide the advantages of both the Structured Matcher
pattern and the QBKG approach.

See Also

The Sponsor-Selector pattern (Wallingford 1998) typically uses Structured Mat-
chers for both recognition and selection tasks.  Each sponsor uses a Structured
Matcher to determine if its resource applies in the current context.  The selector
uses a Structured Matcher to select from among the resources that do apply.

The hierarchy of simple matchers in a Structured Matcher follows the Composite
pattern (Gamma et al. 1995).  The intent of Composite is to allow client code to
treat individual objects and compositions of objects in the same way.  Here, the
client of the Composite is not the system client but the Structured Matcher object,
which provides the public decision-making interface.  The Composite is hidden
from the system client.  Further, the Structured Matcher pattern focuses on the
behavior of the system, rather than its structure.  The key to a Structured
Matcher lies in how the responsibility for making a decision is distributed across
simple matchers.

Influence diagrams  have a long history of use in accounting and auditing.   The
use of Structured Matchers by Ribar (1990) and Mockler (1990) grow out of this
tradition, but both have extended the idea in ways that approach the Structured
Matcher pattern.

One of the important benefits offered by Structured Matcher lies in its use for
domain analysis.  Ribar (1990) describes how the pattern can be used in analysis.
First, the analyst elicits aspects of a situation that affect a decision.  Next, the
analyst culls the set of aspects, identifies overlaps, and organizes them in a
hierarchy of sub-decisions.  Finally, the analyst works with the domain specialists
to build a decision table or other simple matcher for evaluating each aspect. In
artificial intelligence, this task of knowledge acquisition is a primary bottleneck
in the software life cycle, and support for the process is actively sought.  Ribar
built his technique into the Knowledge Acquisition Tool, a commercial system
that allows non-programmers to build systems that use the Structured Matcher
pattern.

Finally, Bylander et al. (1991) wrote the primary research article on the structured
matching technique and did foundational theoretical analysis of its properties.
They formally define the task of a Structured Matcher and analyze the computa-



tional complexity of its solution.  Their paper documents several other known
uses of the pattern and several other techniques related to structured matching.
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