Quick Exercise

At the end of this sequence, how many different colors can the pixel be?

```java
if ( p.getRed() > 127 )
    red = 255;
else
    red = 0;

if ( p.getGreen() > 127 )
    green = 255;
else
    green = 0;

if ( p.getBlue() > 127 )
    blue = 255;
else
    blue = 0;
```
Alternative 1

How about this one?

```java
if ( p.getRed() > 127 || p.getGreen() > 127 || p.getBlue() > 127 )
{
    red   = 255;
    green = 255;
    blue  = 255;
}
else
{
    red = 0;
    green = 0;
    blue = 0;
}
```

... what if we change the `||` to `&&`?
Alternative 2

How about *this* one?

```java
if ( p.getAverage() > 127 )
{
    red   = 255;
    green = 255;
    blue  = 255;
}
else
{
    red = 0;
    green = 0;
    blue = 0;
}
```
One Short Cut

A type in the problem left you with a hint...

```c
int red   = 0;
int green = 0;
int blue  = 0;

if ( p.getRed() > 127 )
    red = 255;

if ( p.getGreen() > 127 )
    green = 255;

if ( p.getBlue() > 127 )
    blue = 255;
```
A Programming Pattern

When you make a design decision:

\[\text{red} + \text{green} < \text{blue} \]

is a good way to determine if a pixel is blue

... write a method to encode the decision:

```java
public void isBlue( Pixel p )
```
The Physics of Sound

amplitude

<---- one cycle --->
The Psychology of Sound

We perceive *volume* as change in amplitude.

If amplitude doubles, that is change of about 3 decibels (dB).

We perceive *pitch* as change in frequency.

We can hear between 5 Hz and 20000 Hz (20 kHz).
Logarithm Scale

Human hearing works with ratios, not differences.

For pitch, this means ...

\[
\begin{align*}
200 & \rightarrow 400 \text{ Hz} \quad \sim \quad 500 & \rightarrow 1000 \text{ Hz} \\
300 & \rightarrow 600 \text{ Hz} \quad \sim \quad 1500 & \rightarrow 3000 \text{ Hz}
\end{align*}
\]
Volume on Log Scale

A decibels is based on the ratio between two volumes:

$$10 \times \log\left(\frac{V_1}{V_2}\right)$$

The absolute measure is in comparison to the threshold of our hearing:

- 0 dB cannot be heard.
- 60 dB is normal speech
- 80 dB is considered shouting
Digitizing Sound

We can estimate the area under a curve using a sampling of rectangles.

To encode a sound, we record the amplitude at a point in time — the height of an implicit rectangle.
How Many Samples?

Nyquist's Theorem
To represent sounds with a maximum frequency of η, we need 2η samples.

Human voices max out at ~ 4 KHz.
So phones work with 8000 samples per second.

Human hearing maxes out at ~ 22 KHz.
So most digital audio works with 44,000 samples/second.
Encoding a Sample of Sound

Each sample = 2 bytes, or 16 bits.

\[^{\wedge} \text{<------------------------> the rest stores the value ----------------> } \]

used
to indicate
sign

\[2^{16} = 65,536 \quad -2^{8} = -32,768 \quad 2^{8}-1 = 32,767 \]
Encoding a Sound

Each sound is an array of samples.

44,100 samples = 1 second of sound
Working with Sound

new Sound(...)

getSamples()
getLength()
getSamplingRate()

getsampleValueAt(int slot)
setSampleValueAt(int slot, int newValue)