
Generalized Modus Ponens

This rule allows us to derive an implication...

True implies pi
p1 and ... pi and ... pn implies q
p1... pi-1 and pi+1... pn implies q

allows:

a1 and ... ai and ... an implies pi
p1 and ... pi and ... pn implies q (pi == ai)
p1... pi-1 and pi+1... pn and
a1 and ... ai and ... an implies q

A benefit of this approach is that the reasoner now can
have a single goal. To derive q from (p1 and ... pi and ... pn
implies q), use generalized modus ponens to

drive p1 and p2 and ... pn to True

This is like recursion to a base case....

Generalized Modus Ponens

Many AI techniques are based on a predicate logic,
extended in particular ways, using generalized modus
ponens as the inference rule. It is simple to program and
reasonably powerful.

The programming language Prolog is based on just this
sort of logic.

The Catch...

But it’s not enough.
Notice that I said “reasonably powerful”.

Modus ponens is sound and complete. It derives only
true sentences, and it can derive any true sentence that a
knowledge base of this form entails.

Notice that I said “of this form”.

Modus ponens works only for knowledge bases that
contain only implications of positive literals.

Implications of positive literals are often called Horn
clauses, after a logician who studied them deeply.

But disjunction (or) and negation (not) break the rule.
And many legal sentences cannot be expressed in Horn
clauses.

The Catch...

For example:

Eugene is a Hoosier, or the Eugene is crazy.

We can write this as a disjunction:

isHoosier(Eugene) or isCrazy(Eugene)

We could use negation to convert this to implications:

(not hoosier(Eugene)) implies isCrazy(Eugene)
(not isCrazy(Eugene)) implies hoosier(Eugene)

Or we could use the semantics of implication to convert
this to a clause:

True
implies

(isHoosier(Eugene) or isCrazy(Eugene))

But we cannot eliminate all the ors and all the nots at
the same time.

The Catch, Part 2

So, Horn clause form is incomplete. That is, we cannot
represent all sentences in this form.

But why is Horn clause form necessary?

Here is an example of how modus ponens breaks down if
we use negation or disjunction.

Suppose that all classes at some university meet either
Mon/Wed/Fri or Tue/Thu. The AI course meets at 2:30
PM in the afternoon, and Jane has volleyball practice
Thursdays and Fridays at that time.

Can Jane take AI?

The Catch, Part 2

Of course not!

But modus ponens cannot figure that out! See:

True
implies (TueThu(AI, 2:30 PM) or

MonWedFri(AI, 2:30 PM))

(TueThu(AI, 2:30 PM) and
busy(Thursday, 2:30 PM))

implies conflict(AI)

(MonWedFri(AI, 2:30 PM) and
busy(Friday, 2:30 PM))

implies conflict(AI)

True implies busy(Thursday, 2:30 PM)

True implies busy(Friday, 2:30 PM)

The Catch, Part 2

We can apply modus ponens to [2, 4] and [3, 5] to derive
the following:

True implies (
TueThu(AI, 2:30 PM) or
MonWedFri(AI, 2:30 PM))

TueThu(AI, 2:30 PM) implies conflict(AI)

MonWedFri(AI, 2:30 PM) implies conflict(AI)

But modus ponens cannot take us any farther, despite
what’s “obvious” about those last two sentences.

Fixing the Catch

So, Horn clause form is incomplete. But, if we allow
something non-Horn into our knowledge base, then
modus ponens is incomplete.

What do we do now?

We need an inference rule that handles disjunctions
and negations. If we find one, then we will be able to
handle any expression...

Why? Because we can use the semantics of implication
to convert our Horn clauses into disjunctions with
negations.

childOf(x, y) and likes(y, Basketball)
implies

likes(x, Basketball)

not [childOf(x, y) and likes(y, Basketball)]
or

likes(x, Basketball)

Toward Fixing the Catch

And then:

not [childOf(x, y) and likes(y, Basketball)]
or

likes(x, Basketball)

BECOMES

[not childOf(x, y)]
or

[not likes(y, Basketball)]
or

likes(x, Basketball)

More generally,

p1 and p2 ... and pn implies q

becomes:

(not p1) or (not p2) ... or (not pn) or q

An Example:
Converting Sentences into Clause Form

1. isHoosier(Eugene)

2. ∀ x isHoosier(x) implies likes(x, Basketball)

3. ∀ xy childOf(x, y) and likes(y, Basketball)
implies likes(x, Basketball)

4. ∀ x likes(x, Basketball) implies likes(x, March)

5. daughter(Ellen, Eugene)

6. ∀ xy daughter(x, y) implies childOf(x, y)

1. isHoosier(Eugene)

2. not isHoosier(x) or likes(x, Basketball)

3. [not childOf(x, y)]

or [not likes(y, Basketball)]

or likes(x, Basketball)

4. [not likes(x, Basketball)] or likes(x, March)

5. daughter(Ellen, Eugene)

6. [not daughter(x, y)] or childOf(x, y)

We’re Almost There...

Now we are able to write any sentence in the predicate
logic, using only the connectives not and or.

• Any sentence that uses implies can be converted
using the rule: (p implies q) == (not p) or q

• Any sentence that uses and can be rewritten as
separate sentences!

This form is called “clause form”, or disjunctive normal
form.

So, now we can write our sentences in a new, complete
form. If only we had an inference rule that worked on
disjunctions and negations, we would be able to infer any
true sentence.

The semantics of the or connective lead us to a new inference rule:

The Solution: Resolution!

The semantics of or lead us to a new inference rule:

p or disjunction1
[not p] or disjunction2
disjunction1 or disjunction2

We call this inference rule resolution because it
resolves the case analysis that is required whenever one
sentence asserts p and another asserts not p.

Let� us consider our new knowledge base:

1. isHoosier(Eugene)

2.not isHoosier(x) or likes(x, Basketball)

3. [not childOf(x, y)] or [not likes(y, Basketball)]
or likes(x, Basketball)

4. [not likes(x, Basketball)] or likes(x, March)

5. daughter(Ellen, Eugene)

6. [not daughter(x, y)] or childOf(x, y)

Can we infer that Ellen likes March?

Yes, But How?

Using resolution as our inference rule, we conclude:

Ellen likes March.

by constructing a proof by contradiction...

To derive the sentence: likes(Ellen, March)

We build a proof by contradiction in this way:

1. Assume that our g�oal� sentence is false.

not likes(Ellen, March)

2. Try to show that the goal sentence being false causes
a contradiction.

... try to infer FALSE ...

If assuming that the goal sentence is false causes a
contradiction, then it must not be false. Everything else
in our knowledge base is true (or so we assume), and so
the cause of the contradiction is our negation.

An Example Proof by Contradiction

p or disjunction1
[not p] __ _ or disjunction2
disjunction1 or disjunction2

1. isHoosier(Eugene)
2. [not isHoosier(x)] or likes(x, Basketball)
3. [not childOf(x, y)] or [not likes(y, Basketball)]

or likes(x, Basketball)
4. [not likes(x, Basketball)] or likes(x, March)
5. daughter(Ellen, Eugene)
6. [not daughter(x, y)] or childOf(x, y)

7. [not likes(Ellen, March)] ASSUMPTION

8. [not likes(Ellen, Basketball)] (4, 7)
9. [not childOf(Ellen, y)] or [not likes(y, Basketball)] (3, 8)
A. [not daughter(Ellen, y)] or

[not likes(y, Basketball)] (6, 9)
B. [not likes(Eugene, Basketball)] (5, A)
C. [not isHoosier(Eugene)] (2, B)
13. FALSE (1, C)

Since assuming that Ellen does not like March cause a
contradiction, then it must follow from the knowledge
base that Ellen does like March.

But Can Jane Take AI?

Big deal! you might say.
We could prove that with modus ponens.
Can resolution do something modus ponens couldn’t?

Use resolution to show that our good friend Jane cannot
take AI from this knowledge base:

True implies
(TueThu(AI, 2:30 PM) or
MonWedFri(AI, 2:30 PM))

(TueThu(AI, 2:30 PM) and
busy(Thursday, 2:30 PM)) implies

conflict(AI)

(MonWedFri(AI, 2:30 PM) and
busy(Friday, 2:30 PM)) implies

conflict(AI)

True implies
busy(Thursday, 2:30 PM)

True implies
busy(Friday, 2:30 PM)

First, convert these sentences to clause form.
Then, assume Jane can take AI...

Poor Jane

1. TueThu(AI, 2:30 PM) or MonWedFri(AI, 2:30 PM)
2. [not TueThu(AI, 2:30 PM)] or

[not busy(Thursday, 2:30 PM)] or conflict(AI)
3. [not MonWedFri(AI, 2:30 PM)] or

[not busy(Friday, 2:30 PM)] or conflict(AI)
4. busy(Thursday, 2:30 PM)
5. busy(Friday, 2:30 PM)

6. not conflict(AI) ASSUMPTION

7. not TueThu(AI, 2:30 PM)] or
[not busy(Thursday, 2:30 PM) (2, 6)

8. MonWedFri(AI, 2:30 PM) or
[not busy(Thursday, 2:30 PM)] (1, 7)

9. MonWedFri(AI, 2:30 PM) (4, 8)
A. [not busy(Friday, 2:30 PM)] or

conflict(AI) (3, 9)
B. conflict(AI) (5, A)
C. FALSE (6, B)

So, resolution can handle cases that generalized modus
ponens can’t!

