
a simple design question

A passenger is a person.

An agent is a person.

Some people are agents and passengers.

So...

A simple class diagram showing the inheritance relationships among Person, Passenger,
Agent, and Passenger-Agent.

I generated the simple class diagrams for this session using YUML, a nice on-line tool at
http://yuml.me/

This is legal in C++.

class Person
{ /*...*/ };

class Agent : public Person
{ /*...*/ };

class Passenger : public Person
{ /*...*/ };

class PassengerAgent :
 public Agent, public Passenger
{ /*...*/ };

In C++, we can create a subclass with two superclasses using a comma-separated list of
base classes.

But this is not legal in Java.

public class PassengerAgent
 extends Agent, Passenger
{
 /*...*/
}

Propose an alternate design.

This is not legal in Ada95, either. See http://www.adaic.org/learn/tech/multin.html

Many designers prefer not to use multiple inheritance anyway. They think it complicates
the semantics of programs and can make it harder to modify code. Others use it sparingly
but to good effect in complex applications.

Regardless of language, this
is not a good OO design.

Let’s see how it stands up
against several principles for

using inheritance.

Let’s see how it stands up against several principles for using inheritance.

1.

The subclass extends its
superclass with new

behaviors.

OK.

Passenger-Agent does not add new behavior, but at least it doesn’t subtract behavior.

2.

The subclass is not
merely a utility or

helper class.

OK.

Passenger and Agent do real work. They have attributes and behavior:

Agent
 password, authorizationLevel
 isAuthorized()

Passenger
 type
 assessPreferences()

3.

The subclass is a special
kind of an object.

#fail

An agent is not a kind of person.
It is a role played by a person.

Role played is a common abstraction when modeling problem domains.

Roles and transactions are both common abstractions. Consider inheritance for kinds of
things -- the more general abstraction -- after considering more specific kinds of
relationships.

4.

An object never needs to
transmute into an

instance of another class.

#fail

An agent can become a passenger,
and vice versa.

The PassengerAgent class indicates that an agent can even become a passenger without
stopping being an agent!

Inheritance is useful,

but

composition is the norm.

So let’s use composition with role objects...

A person can be play an agent role, or not. That means it can have 0 or 1 agent role
objects. Likewise for the passenger role.

public class Person {
 // ...
 private Agent agentRole;
 private Passenger passengerRole;

 //...

 public void startFlightAs(Passenger p) {
 passengerRole = p;
 }

 public void stopFlight() {
 passengerRole = null;
 }
 //...
}

(If null becomes a problem, what could we do?)

public class Passenger {
 // ...

 private Person person;

 //...

 public Passenger(Person p) {
 person = p;
 }

 //...
}

Note that there is no default constructor. A passenger must be related to a person.

But...

Aren’t Agent and Passenger special kinds
of roles played by a person?

Yes! There is a place for inheritance here...

max 1 each

Inheritance is often used in conjunction with composition. We design small, focused
hierarchies of specific kinds of objects, and use them as components in larger-scale
design.

Is this a good
OO design?

Let’s see how it stands up
against the same principles of

inheritance.

1. The subclass extends its
superclass with new behaviors.

2. The subclass is not merely a
utility or helper class.

3. The subclass is a special kind
of an object.

4. An object never needs to
transmute into an instance of
another class.

Check.

Check.

Check.

Check.

You don’t need to settle for designs that feel wrong.

There is often a better design to be found.

This is an example of
the Role Object
design pattern.

http://www.cix.co.uk/~smallmemory/almanac/BaumerEtc99.html

Published in Pattern Languages of Program Design 4, pages 15-31.
An earlier version appeared at PLoP 1997:
 http://hillside.net/plop/plop97/Proceedings/riehle.pdf

these four principles
of inheritance

are examples of
design heuristics

What does heuristic mean? If you have had AI, then you should have a guess...

There are many design heuristics.

a commonsense rule intended
to increase the probability of

solving some problem

It’s not a recipe. It cannot guarantee an answer. It guides us in the direction of right
answers.

Note: a design pattern cannot guarantee an answer, either. It guides us in the direction of
right answers. It is a tool to be used. It can be used well, and it can be used poorly.

There are many design heuristics. There are many even heuristics involving inheritance.
Here are a few examples from a great book, Object-Oriented Design Heuristics by Arthur
Riel.

A superclass should not know
anything about its subclasses.

Why?

Violating this rule leads to the Fragile Base Class Problem.

All data in a superclass
should be private.

Why?

Violating this rule leads to the Fragile Base Class Problem.

I subscribe to a stricter guideline: All instance variables are private. In all classes. Period.

Why?

OO systems are designed around behavior -- the responsibilities of each object. Data are
implementation detail. If one object can know anything about another object’s data, then
it can be designed based on the data, not around the behavior.

If you have an example
of multiple inheritance
in your design, assume

you have made a
mistake and prove

otherwise.

“Assume you have made a mistake and proved otherwise” is good advice in many design
cases. Whenever you do something that is not the norm, have a good reason!

dates of interest

10/26/09

10/27/09

10/29/09

10/30/09

11/03/09

11/05/09

→
→
→

*** postponing things by a week ***

Friday: project designs are due (or: iteration 2 is due)

Tuesday: discuss designs in class ... informal presentations

Thursday: midterm exam

