
add remote sensors
to the design

we have sensors
recording problems ...

RemoteSensor

previousReading

previousReading

... and wish to add
remote sensors

Sensor

value
range

operationalState

activate
monitor
assess

Problem

Interval

timeDetected
worstValue

timeCorrected

getDuration

1 0..*

There seems to be a relationship...

one approach: subclass

Sensor

value
range

operationalState

activate
monitor
assess

1 0..*

RemoteSensor

previousReading

previousReading

Problem

Interval

timeDetected
worstValue

timeCorrected

getDuration

A RemoteSensor is a Sensor. But it doesn’t have ranges or states that the system can
control.

Does a RemoteSensor have ProblemIntervals? In this design it does!

1. The subclass extends
its superclass with new
behaviors.

2. The subclass is not
merely a utility or
helper class.

3. The subclass is a
special kind of an
object.

4. An object never needs
to transmute into an
instance of another class.

good design?

Sensor

value
range

operationalState

activate
monitor
assess

1 0..*

RemoteSensor

value
range

operationalState
previousReading

activate
monitor
assess

previousReading

Problem

Interval

timeDetected
worstValue

timeCorrected

getDuration

X

RemoteSensor has an inherited relationship with ProblemInterval that it ignores as well.

Inheritance is useful,

but

we need to redesign
the class structure!

The two kinds of sensor are, well, kinds of sensor. What relationship does that indicate?

A common superclass (or interface).

a better approach:
a new base class

RemoteSensor

previousReading

ActiveSensor

range
operationalState

activate
monitor
assess

1 0..*

Problem

Interval

timeDetected
worstValue

timeCorrected

getDuration

Sensor

value

Pull what is common to two kinds of thing into a superclass that represents the common
thing.

Inheritance 101.

extract superclass

a common design mod:

You can do this while creating a design from scratch.

You can do this when re-designing a system in response to change. This is a daily practice
in the agile approaches to software development. Those folks call it refactoring. We will
discuss this practice more next week.

design heuristic

a commonsense rule intended to increase the probability of solving some problem

last time, some heuristics for the use of inheritance

more general...

system topology
heuristics

a heuristic: distribute intelligence horizontally as uniformly as possible

an example: room temperature monitor

tongue-in-cheek heuristic

beware action as object

DigitCollector

callBuffer

DialToneCreator

connector

Telephone
Call

callBuffer
connector

collectDigits
initiateDialTone

vs

a heuristic: distribute intelligence horizontally as uniformly as possible

an example: room temperature monitor

tongue-in-cheek heuristic

distribute action uniformly

before

Furnace
Heat Flow
Regulator

Temperature
Sensor

Occupancy
Sensor

Desired Temp
Panel

distribute action uniformly

after Step 1

Furnace
Heat Flow
Regulator

Temperature
Sensor

Occupancy
Sensor

Desired Temp
Panel

Room

distribute action uniformly

after Step 2

Furnace
Heat Flow
Regulator

Temperature
Sensor

Occupancy
Sensor

Desired Temp
Panel

Room

god classes: data or behavior

tongue-in-cheek heuristic: choose n-1

<proxy exercise>

on paper...

dates of interest

10/26/09

10/27/09

10/29/09

10/30/09

11/03/09

11/05/09

→
→
→

*** postponing things by a week ***

Friday: project designs are due (or: iteration 2 is due)

Tuesday: discuss designs in class ... informal presentations

Thursday: midterm exam

