
Computer
“Science”

Is Computer "Science"?

What kind of science is "computer science"?
•
 algorithms -- mathematics
•
 operating systems?
•
 programming languages?
•
 software engineering?

Software engineering studys how we make software -- software process -- rather than
the computational processes that define the field more generally.

We should make software engineering more than...

Computer
“strong
opinion”

or...

Computer
“fervent
desire”

or...

Computer
“I heard about

this guy once...”

Empirical
Software

Engineering

Since the early 1990s we have seen a growing emphasis (and more fervid desires!) to study
the way people make software empirically:
•
 controlled laboratory experiments (for small things)
•
 case studies and data mining (for large ones)

caveat:
small

and big

What is true of small systems may not be true of large ones.
“There's a difference between molecules bouncing off each other and fluid turbulence.” —
Greg Wilson

The best programmers
are up to 28 times

more productive than
the worst.

... or 5, or 100, or some other number. Every time we see this claim, it seems to use a
different value for n.

The original study was done by Sackman et al. and published in 1968. The study followed
only 12 subjects.

(1968! Most programmers were self-taught, which would make wide variation more
likely.)
And And "up to" can hide a lot of sins

Boehm (1975) claims up to a factor of five. This is consistent with what we see in other
creative disciplines.

Productivity depends
on the length of a
program’s text,
independent of
language level.

This reflects human (in)ability to manage detail.

It means more powerful languages make us more powerful.

Problem: programs written in such languages run slower.

Practice: Build the first version using high-level tools. Profile. Rewrite code in the
bottlenecks. Port to a lower-level language only if essential.

Recent examples: Ruby on Rails.

Error removal consumes
more time than any
other activity.

Typically 20% each on requirements, design, and coding, then 40% on fixing things --
either immediately or later.

All that traditional and agile processes do is change the sizes of the chunks, not their
proportions.

Is refactoring fixing, or not? It depends.

Rigorous code
inspection can remove
60-90% of all errors
before the first test

is run.

That is a wide range, but the number is big in any case.

But is this more economical than writing tests?
Especially because most code is modified several times before being shipped?

Yes! Several studies have shown that code inspections are the single most cost-effective
error removal technique.

Pair programming is a form of continuous code review used in the agile world. Finding
defects more than makes up for the cost of two programmers.

The "culture of review" in many open source projects is one of the reasons their code is so
good. But there is no evidence to support the claim that "Given enough eyeballs, all bugs
are shallow."

Effectiveness of inspections is fairly independent of its organizational form.

Maintenance accounts
for 40-80% of the cost
of a software project.

[BOE75] is an early reference, but the finding has been validated many times since.

Its is the single largest cost in most projects, but almost always underestimated.

Enhancement is roughly
60% of maintenance.

Enhancement is a result of changing requirements.

Yes, they keep changing after software is in production.

How much effort goes into other kinds of maintenance?
18%: adaptive maintenance (i.e., keeping up with a changing environment)
17%: error correction
 5%: miscellaneous

30% of maintenance is
figuring out what the

software does.

This figure rises as software ages.

Documentation.
Institutional memory.

Better software
engineering leads to
more maintenance,

not less.

Why?

The better the system, the longer it will live.
The longer a system lives, the more changes are possible!

If you want to be a software engineer, you should know what is true about practices in our
discipline.

If you can only read one book, this is probably the single best summary of empirical SE
results:

 Robert L. Glass, Facts and Fallacies of Software Engineering, Addison-Wesley, 2002.

Here are some of the papers documenting the claims made in this session:

•
 Barry Boehm, “The High Cost of Software”, Practical Strategies for Developing Large
Software Systems, Ellis Horowitz, 1975.

•
 H. Sackman, W. I. Erikson, and E. E. Grant, “Exploratory Experimental Studies
Comparing Online and Offline Programming Performances”, Communications of the ACM,
11(1), 1968.

