
Chapter 15: A Longer
Example

Reading individual refactorings is important, because you have to
know the moves in order to play the game. Yet reading about refactor-
ings one at a time can also miss the point, for the value of refactoring
only comes when combine a long series of refactorings together. Indi-
vidually each refactoring is a minor change, almost not worth the
effort. Yet the result of a series of them is a big change that can do a lot
for the long term flexibility of the system.

Chapter 1 provides something of an example of this. This chapter
extends on that by giving you a larger example of refactoring. Of
course this is still very much an example system. When you refactor in
the real world the process is fast and fluid, but reading an account of it
is hard work. Even an example like the one here takes a lot of pages to
explain, and my reviewers all remarked that it is hard going on the
reader. So don’t be surprised if you find this chapter a struggle. Indeed
I suspect a significant proportion of readers won’t find this section too
valuable. That’s why it’s at the end.

The example I chose deals with inheritance. Inheritance is one of the
most famous features of object-oriented systems, and so it should
come as no surprise that refactoring is a good way to help make the
best use of inheritance. I am going to work with a bunch of classes that
form a classic inheritance structure. I will start with a program that has
four unrelated classes which exhibit similar behavior. During the
course of the refactoring I will merge them into a superclass and sub-
classes. The similar behavior is not that obvious, not simply a case of
spotting that there methods with the same name and same body. As
such this is quite a long chapter, but it says a lot about the way in
which you do refactoring.
355

356 A LONGER EXAMPLE
The Initial Program

The example problem is that of an electricity utility charging its cus
tomers. The utility has several kinds of customers and charges them in
different ways. In all cases, however, it wants to know how many dol
lars it should charge them for the latest reading.

The types of customer are: Residential, Disability, Lifeline, and Busi
ness.

In each case the principal task of the class is to calculate the latest
charge. The algorithms show quite different code but, as we shall see,
there is still a great deal of commonality.

To begin with, however, we shall look at the code. I shall start with the
Residential Site class (Figure 15.1).

class ResidentialSite {

private Reading[] _readings = new Reading[1000];

private static final double TAX_RATE = 0.05;

private Zone _zone;

ResidentialSite (Zone zone) {

_zone = zone;

}

Readings are added to the residential site with

Figure 15.1: The residential site

Resident ia lSi te
addRead ing
charge()
charge(usage, star t , end)
dayOfYear

TAX_RATE = 0 .05

Residental Site

Reading
1000

Zone
1

357
public void addReading(Reading newReading)

{

// add reading to end of array

int i = 0;

while (_readings[i] != null) i++;

_readings[i] = newReading;

}

Like all the site classes there is a public charge method which calcu-
lates the latest charge for the site.

public Dollars charge()

{

// find last reading

int i = 0;

while (_readings[i] != null) i++;

int usage = _readings[i-1].amount() - _readings[i-2].amount();

Date end = _readings[i-1].date();

Date start = _readings[i-2].date();

start.setDate(start.getDate() + 1); //set to begining of period

return charge(usage, start, end);

}

As you can see, all it does is set up the arguments for another charge
method, which is private to the class.

private Dollars charge(int usage, Date start, Date end) {

Dollars result;

double summerFraction;

// Find out how much of period is in the summer

if (start.after(_zone.summerEnd()) || end.before(_zone.summerStart()))

summerFraction = 0;

else if (!start.before(_zone.summerStart()) && !start.after(_zone.summerEnd()) &&

!end.before(_zone.summerStart()) && !end.after(_zone.summerEnd()))

summerFraction = 1;

else { // part in summer part in winter

double summerDays;

if (start.before(_zone.summerStart()) || start.after(_zone.summerEnd())) {

// end is in the summer

summerDays = dayOfYear(end) - dayOfYear (_zone.summerStart()) + 1;

} else {

// start is in summer

summerDays = dayOfYear(_zone.summerEnd()) - dayOfYear (start) + 1;

};

summerFraction = summerDays / (dayOfYear(end) - dayOfYear(start) + 1);

};

358 A LONGER EXAMPLE
result = new Dollars ((usage * _zone.summerRate() * summerFraction) +

(usage * _zone.winterRate() * (1 - summerFraction)));

result = result.plus(new Dollars (result.times(TAX_RATE)));

Dollars fuel = new Dollars(usage * 0.0175);

result = result.plus(fuel);

result = new Dollars (result.plus(fuel.times(TAX_RATE)));

return result;

}

This is a complicated beast. It makes use of one further method to help
with date calculations.

int dayOfYear(Date arg) {

int result;

switch (arg.getMonth()) {

case 0:

result = 0;

break;

case 1:

result = 31;

break;

case 2:

result = 59;

break;

case 3:

result = 90;

break;

case 4:

result = 120;

break;

case 5:

result = 151;

break;

case 6:

result = 181;

break;

case 7:

result = 212;

break;

case 8:

result = 243;

break;

case 9:

result = 273;

break;

359
case 10:

result = 304;

break;

case 11:

result = 334;

break;

default :

throw new IllegalArgumentException();

};

result += arg.getDate();

//check leap year

if ((arg.getYear()%4 == 0) && ((arg.getYear() % 100 != 0) ||

((arg.getYear() + 1900) % 400 == 0)))

{

result++;

};

return result;

}

That (at least for our purposes) is the residential site class. The residen-
tial site uses a number of other classes. The readings and zone classes
(Figure 15.2) are just simple encapsulated records.

class Reading {

public Date date() {

return _date;

Figure 15.2: Adding the reading and zone classes

Resident ia lSi te
addRead ing
charge()
charge(usage, star t , end)
dayOfYear

TAX_RATE = 0 .05

Residental Site

date
amoun t

Reading1000

summerE nd
summerSta r t
summerRa te
winterRate

Zone

1

360 A LONGER EXAMPLE
}

public int amount() {

return _amount;

}

public Reading(int amount, Date date) {

_amount = amount;

_date = date;

}

private Date _date;

private int _amount;

}

class Zone {

public Zone persist() {

Registrar.add("Zone", this);

return this;

}

public static Zone get (String name) {

return (Zone) Registrar.get("Zone", name);

}

public Date summerEnd() {

return _summerEnd;

}

public Date summerStart() {

return _summerStart;

}

public double winterRate() {

return _winterRate;

}

public double summerRate() {

return _summerRate;

}

Zone (String name, double summerRate, double winterRate,

Date summerStart, Date summerEnd) {

_name = name;

_summerRate = summerRate;

_winterRate = winterRate;

_summerStart = summerStart;

_summerEnd = summerEnd;

};

private Date _summerEnd;

private Date _summerStart;

361
private double _winterRate;

private double _summerRate;

}

The dollars class is a use of the Quantity pattern. It combines the
notion of an amount and a currency. I’m not going to go into too many
details here. Essentially you create dollars objects with a constructor
that has a number for the amount. The class supports some basic arith-
metic operations.

An important part of the dollars class is the fact that it rounds all num-
bers to the nearest cent, a behavior which is often very important in
financial systems. As my friend Ron Jeffries told me: “Be kind to pen-
nies, and they will be kind to you”.

362 A LONGER EXAMPLE
Next up is a class used for calculating charges for people who are dis-
abled (Figure 15.3). Its structure is similar to the residential case except
for a few more constants.

class DisabilitySite {

private Reading[] _readings = new Reading[1000];

private static final Dollars FUEL_TAX_CAP = new Dollars (0.10);

private static final double TAX_RATE = 0.05;

private Zone _zone;

private static final int CAP = 200;

Again it has a method for adding new readings

public void addReading(Reading newReading)

Figure 15.3: Adding the disability site

Resident ia lSi te
addRead ing
charge()
charge(usage, star t , end)
dayOfYear

T A X _ R A T E

Residental Site

date
amoun t

Reading1000

summerE nd
summerSta r t
summerRa te
winterRate

Zone

1

Disabi l i tySite
addRead ing
charge()
charge(usage, star t , end)
dayOfYear

T A X _ R A T E
F U E L T A X C A P
C A P

Disability Site

1000

1

363
{

int i;

for (i = 0; _readings[i] != null; i++);

_readings[i] = newReading;

}

There are also two charge methods. The first is public and takes no
arguments.

public Dollars charge()

{

int i;

for (i = 0; _readings[i] != null; i++);

int usage = _readings[i-1].amount() - _readings[i-2].amount();

Date end = _readings[i-1].date();

Date start = _readings[i-2].date();

start.setDate(start.getDate() + 1); //set to begining of period

return charge(usage, start, end);

}

The second is the private, three argument method.

private Dollars charge(int fullUsage, Date start, Date end) {

Dollars result;

double summerFraction;

int usage = Math.min(fullUsage, CAP);

if (start.after(_zone.summerEnd()) || end.before(_zone.summerStart()))

summerFraction = 0;

else if (!start.before(_zone.summerStart()) && !start.after(_zone.summerEnd()) &&

!end.before(_zone.summerStart()) && !end.after(_zone.summerEnd()))

summerFraction = 1;

else {

double summerDays;

if (start.before(_zone.summerStart()) || start.after(_zone.summerEnd())) {

// end is in the summer

summerDays = dayOfYear(end) - dayOfYear (_zone.summerStart()) + 1;

} else {

// start is in summer

summerDays = dayOfYear(_zone.summerEnd()) - dayOfYear (start) + 1;

};

summerFraction = summerDays / (dayOfYear(end) - dayOfYear(start) + 1);

};

result = new Dollars ((usage * _zone.summerRate() * summerFraction) +

(usage * _zone.winterRate() * (1 - summerFraction)));

result = result.plus(new Dollars (Math.max(fullUsage - usage, 0) * 0.062));

364 A LONGER EXAMPLE
result = result.plus(new Dollars (result.times(TAX_RATE)));

Dollars fuel = new Dollars(fullUsage * 0.0175);

result = result.plus(fuel);

result = new Dollars (result.plus(fuel.times(TAX_RATE).min(FUEL_TAX_CAP)));

return result;

}

This again uses a dayOfYear method which is identical to the one for the
residential site.

365
Our next site is called a lifeline site (Figure 15.4), used for people who
claim special state dispensation due to poverty.

public class LifelineSite

private Reading[] _readings = new Reading[1000];

private static final double TAX_RATE = 0.05;

The method to add a reading looks different this time

public void addReading(Reading newReading) {

Figure 15.4: Adding the lifeline site

Resident ia lSi te
addRead ing
charge()
charge(usage, star t , end)
dayOfYear

T A X _ R A T E

Residental Site

date
amoun t

Reading1000

summerEnd
summerSta r t
summerRa te
winterRate

Zone

1

Disabi l i tySite
addRead ing
charge()
charge(usage, star t , end)
dayOfYear

T A X _ R A T E
F U E L T A X C A P
C A P

Disability Site

1000

1

Lifel ineSite
addRead ing
charge()
charge(usage)

T A X _ R A T E

Lifeline Site

1000

366 A LONGER EXAMPLE
Reading[] newArray = new Reading[_readings.length + 1];

System.arraycopy(_readings, 0, newArray, 1, _readings.length);

newArray[0] = newReading;

_readings = newArray;

}

Again there is a charge method with no parameters.

public Dollars charge()

{

int usage = _readings[0].amount() - _readings[1].amount();

return charge(usage);

}

But this time the private charge method only takes one parameter

private Dollars charge (int usage) {

double base = Math.min(usage,100) * 0.03;

if (usage > 100) {

base += (Math.min (usage,200) - 100) * 0.05;

};

if (usage > 200) {

base += (usage - 200) * 0.07;

};

Dollars result = new Dollars (base);

Dollars tax = new Dollars (

result.minus(new Dollars(8)).max(new Dollars (0)).times(TAX_RATE)

);

result = result.plus(tax);

Dollars fuelCharge = new Dollars (usage * 0.0175);

result = result.plus (fuelCharge);

return result.plus (new Dollars (fuelCharge.times(TAX_RATE)));

}

367
Our last site is the business site

class BusinessSite {

private int lastReading;

private Reading[] _readings = new Reading[1000];

private static final double START_RATE = 0.09;

static final double END_RATE = 0.05;

Figure 15.5: Adding the business site

Resident ia lSi te
addRead ing
charge()
charge(usage, star t , end)
dayOfYear

T A X _ R A T E

Residental Site

date
amoun t

Reading1000

summerEnd
summerSta r t
summerRa te
winterRate

Zone

1

Disabi l i tySite
addRead ing
charge()
charge(usage, star t , end)
dayOfYear

T A X _ R A T E
F U E L T A X C A P
C A P

Disability Site

1000

1

Lifel ineSite
addRead ing
charge()
charge(usage)

T A X _ R A T E

Lifeline Site

1000

BusinessSi te
addRead ing
charge()
charge(usage)

S T A R T R A T E
E N D R A T E
E N D A M O U N T
lastReading

Business Site

1000

368 A LONGER EXAMPLE
static final int END_AMOUNT = 1000;

There is another variation for adding a reading

public void addReading(Reading newReading) {

_readings[++lastReading] = newReading;

}

private int lastReading;

Again there is a no-argument charge method

public Dollars charge()

{

int usage = _readings[lastReading].amount() - _readings[lastReading -1].amount();

return charge(usage);

}

And a one-argument charge method.

private Dollars charge(int usage) {

Dollars result;

if (usage == 0) return new Dollars(0);

double t1 = START_RATE - ((END_RATE * END_AMOUNT) - START_RATE) / (END_AMOUNT - 1);

double t2 = ((END_RATE * END_AMOUNT) - START_RATE) * Math.min(END_AMOUNT, usage) /

(END_AMOUNT - 1);

double t3 = Math.max(usage - END_AMOUNT, 0) * END_RATE;

result = new Dollars (t1 + t2 + t3);

result = result.plus(new Dollars (usage * 0.0175));

Dollars base = new Dollars (result.min(new Dollars (50)).times(0.07));

if (result.isGreaterThan(new Dollars (50))) {

base = new Dollars (base.plus(result.min(new Dollars(75)).minus(

new Dollars(50)).times(0.06)

));

};

if (result.isGreaterThan(new Dollars (75))) {

base = new Dollars (base.plus(result.minus(new Dollars(75)).times(0.05)));

};

result = result.plus(base);

return result;

}

369
The First Step in Refactoring

The first step in refactoring is to write the tests. How do we do this for
this example? I shall use JUnit, which I described in Chapter 4.

The key behavior of classes that we are considering here is their ability
to calculate charges. Thus my testing approach is based on feeding a
site object with readings, calculating a charge, and checking that the
charge is correct. As we have four kinds of site, we should have four
fixtures that allow us to test the four different sites effectively. To start
with we can pick any kind of site, I’ll start with the lifeline. I set the
class up with facilities to run suites as I discussed in Chapter 4. I also
prepare a setUp method

class LifelineTester() {

LifelineSite _subject;

public void setUp() {

Registry.add("Unit", new Unit ("USD"));

new Zone ("A", 0.06, 0.07, new Date ("15 May 1997"), new Date ("10 Sep 1997")).register();

new Zone ("B", 0.07, 0.06, new Date ("5 Jun 1997"), new Date ("31 Aug 1997")).register();

new Zone ("C", 0.065, 0.065, new Date ("5 Jun 1997"), new Date ("31 Aug

1997")).register();

_subject = new LifelineSite();

}

The registry class provides simple function to save and retrieve values
in memory. The register method registers objects in the registry. That
part of the program is outside the bounds of what I want to concen-
trate on in this exercise.

Now I have a lifeline site in my fixture, I need to prepare some test
cases. It would be useful to know what the requirements are for this
charge. If you have them, you should use the business requirements to
help come up with the tests. Surprise, surprise the requirements docu-
ments for this code are not around (if they were ever written at all.) So
here I look at the code for the charge method

private Dollars charge (int usage) {

double base = Math.min(usage,100) * 0.03;

if (usage > 100) {

base += (Math.min (usage,200) - 100) * 0.05;

370 A LONGER EXAMPLE
};

if (usage > 200) {

base += (usage - 200) * 0.07;

};

Dollars result = new Dollars (base);

Dollars tax = new Dollars (result.minus(new Dollars(8)).max(new Dollars

(0)).times(TAX_RATE));

result = result.plus(tax);

Dollars fuelCharge = new Dollars (usage * 0.0175);

result = result.plus (fuelCharge);

return result.plus (new Dollars (fuelCharge.times(TAX_RATE)));

}

What I’m looking for here is boundary conditions to help me come up
with values. Straight away it seems that a zero charge should yield a
zero bill.

public void testZero() {

_subject.addReading(new Reading (10, new Date ("1 Jan 1997")));

_subject.addReading(new Reading (10, new Date ("1 Feb 1997")));

assertEquals (new Dollars(0), _subject.charge());

}

Another boundary clearly lies at around 100.

public void test100() {

_subject.addReading(new Reading (10, new Date ("1 Jan 1997")));

_subject.addReading(new Reading (110, new Date ("1 Feb 1997")));

assertEquals (new Dollars(4.84), _subject.charge());

}

How did I get the $4.84 figure? If I had the requirements document I
would have calculated it independently (using a calculator, spread-
sheet, or abacus). Since I don’t and I’m refactoring I can do it by run
ning the test, seeing what the answer is, and embedding that answer
into the tests. Refactoring should not change the external behavior. I
that behavior includes errors, then strictly we don’t care. Of course
since we are writing these tests we ought to try and verify them with
the business. But we don’t need to do that in order to refactor.

100 looks like a boundary, we should tackle above and below the
boundary.

public void test99() {

_subject.addReading(new Reading (100, new Date ("1 Jan 1997")));

_subject.addReading(new Reading (199, new Date ("1 Feb 1997")));

371
assertEquals (new Dollars(4.79), _subject.charge());

}

public void test101() {

_subject.addReading(new Reading (1000, new Date ("1 Jan 1997")));

_subject.addReading(new Reading (1101, new Date ("1 Feb 1997")));

assertEquals (new Dollars(4.91), _subject.charge());

}

We do the same for 200

public void test199() {

_subject.addReading(new Reading (10000, new Date ("1 Jan 1997")));

_subject.addReading(new Reading (10199, new Date ("1 Feb 1997")));

assertEquals (new Dollars(11.6), _subject.charge());

}

public void test200() {

_subject.addReading(new Reading (0, new Date ("1 Jan 1997")));

_subject.addReading(new Reading (200, new Date ("1 Feb 1997")));

assertEquals (new Dollars(11.68), _subject.charge());

}

public void test201() {

_subject.addReading(new Reading (50, new Date ("1 Jan 1997")));

_subject.addReading(new Reading (251, new Date ("1 Feb 1997")));

assertEquals (new Dollars(11.77), _subject.charge());

}

Another boundary is the eight dollars for taxes. We seem to be either
side of that boundary with our calculations. The question is whether it
is worth the effort to get closer to that boundary. The value is the likeli-
hood of finding bugs we otherwise would not catch. A bit of algebra
tells me that the $8 cut off for taxes is exactly at the 200 usage bound-
ary, so the tests at the 200 boundary catch both. So I will finish with a
large value.

public void testMax() {

_subject.addReading(new Reading (0, new Date ("1 Jan 1997")));

_subject.addReading(new Reading (Integer.MAX_VALUE, new Date ("1 Feb 1997")));

assertEquals (new Dollars(1.9730005336E8), _subject.charge());

}

Another boundary is what happens if there are no readings?

public void testNoReadings() {

assertEquals (new Dollars(0), _subject.charge());

}

The answer is that I get a null pointer exception. In this situation there
are two possibilities. One is that the null pointer exception is a bug. In
this case I put the test to one side as bug finding test. I would fix that

372 A LONGER EXAMPLE
bug later on during the refactoring exercise. The other possibility is
that it is the expected behavior, in which case I need to test to ensure it
continues to happen. This would look like

public void testNoReadings() {

try {

_subject.charge();

assert(false);

} catch (NullPointerException e) {}

}

The other sites are dealt with along similar lines. In each case look for
the conditions that look like boundaries and concentrate the tests
there. This process yields tester classes for each site. I also add an over
all class to pull all the tests together.

public static Test suite() {

TestSuite result = new TestSuite();

result.addTest(LifelineTester.suite());

result.addTest(BusinessTester.suite());

result.addTest(DisabilityTester.suite());

result.addTest(ResidentialTester.suite());

return result;

}

Starting a Hierarchy of Sites

I have no idea which two classes to start with in this case, so I will pick
two at random. Well maybe not entirely at random, these two classes
do have two fields in common, readings and zone, so there is perhaps
a bit more common ground here. Usually I do like to start with those
that have the most data in common. But I don’t think it matters in this
case.

Pulling up the zone and readings fields

The zone field is really very similar. Each class has a field of type Zone
that is set in the constructor. At this point I want to know how the zone
is used. To do this I do a find for “_zone” in both files and look to see
where it used. As I do this I can see that the zone is not modified after
the constructor has set it up, and it used quite a lot in the charge
method.

373
From this I feel ready to create a superclass Site and to move the zone
field to it. The first step is to declare the new superclass.

class Site {}

Now I make it the superclass of residential and disability

class ResidentialSite extends Site

class DisabilitySite extends Site

With that I can use Pull Up Field (270 to move the zone field up to the
superclass

class Site...

protected Zone _zone;

By making the zone field protected I can ensure that the subclasses can
still work with it as before. Some people feel strongly that fields should
not be protected, rather they should be private. If you feel like this you
use Self Encapsulate Field (184) at this point and provide a Getting
Method for it. I’m not so concerned and so I’ll leave it protected, at least
for the moment.

Both constructors use this field so I might as well use Pull up Construc-
tor Body (273 on those, one at a time

class Site...

Site (Zone zone) {

_zone = zone;

}

class ResidentialSite...

public ResidentialSite (Zone zone) {

super (zone);

};

Once I’ve tested it to make sure everything is all right, I do the same
for DisabilitySite.

class DisabilitySite ...

public DisabilitySite (Zone zone) {

super (zone);

}

The next field to move is the readings field. Again I do a find to look at
how it is used in the two classes. In both cases it is initialized to a 1000
element array. The addReading method finds the last reading in the array
and adds a reading to the end. The charge method pulls some readings
out of the array. I can begin safely using Pull Up Field (270).

374 A LONGER EXAMPLE
class Site {

Site (Zone zone) {

_zone = zone;

}

protected Zone _zone;

protected Reading[] _readings = new Reading[1000];

I then remove it from the subclasses and test.

While the zone field did not have much behavior to deal with, the
readings field does, and this seems a reasonable next target for my
attention. Although one uses a for loop, and the other a while loop,
they both add the new reading to the next null spot in the array. I can
therefore pick one of them to move to site, and get rid of both of them.

class Site {

public void addReading(Reading newReading) {

int i = 0;

while (_readings[i] != null) i++;

_readings[i] = newReading;

}

That worked fine, but I don’t find the addReading method clearly indi-
cates what it is doing. It is finding the first non null index in the array,
and adding the new reading at that point. I would like the code to say
that more clearly. I can do that by creating an Intention Revealing
Method for finding the first unused index in the readings array.

class Site {

public void addReading(Reading newReading) {

_readings[firstUnusedReadingsIndex()] = newReading;

}

private int firstUnusedReadingsIndex () {

int i = 0;

while (_readings[i] != null) i++;

return i;

}

I’m not completely happy about the name “firstUnusedReadingsIndex” but
the way the method works seems clearer now. Figure 15.6 summarizes
where we are at this point. The zone and readings fields have been

375
pushed up to our new site class, and the addReadings method has also
been moved up and simplified.

Figure 15.6: After pulling up the data for residential and disability sites

Resident ia lSi te
charge()
charge(usage, star t , end)
dayOfYear

T A X _ R A T E

Residental Site

date
amoun t

Reading

1000

summerEnd
summerSta r t
summerRa te
winterRate

Zone

1

Disabi l i tySite
charge()
charge(usage, star t , end)
dayOfYear

T A X _ R A T E
F U E L T A X C A P
C A P

Disability Site

Lifel ineSite
addRead ing
charge()
charge(usage)

T A X _ R A T E

Lifeline Site

1000

BusinessSi te
addRead ing
charge()
charge(usage)

S T A R T R A T E
E N D R A T E
E N D A M O U N T
lastReading

Business Site

1000

Site
addRead ing
f i rs tUnusedReadingsIndex

Site

376 A LONGER EXAMPLE
Decomposing the no-arg charge method

While I’m looking at the use of the readings field the public charge
method seems a good next item to work on. It looks identical in the
two classes (I guess it was cut and pasted between them). So I can
move it to site.

class Site {

public Dollars charge() {

// find last reading

int i = 0;

while (_readings[i] != null) i++;

int usage = _readings[i-1].amount() - _readings[i-2].amount();

Date end = _readings[i-1].date();

Date start = _readings[i-2].date();

start.setDate(start.getDate() + 1); //set to begining of period

return charge(usage, start, end);

}

The highlighted line above causes a problem because it calls a method
that is only defined by the subclasses. To get this to work I need to
define an abstract method for charge (int, Date, Date) and loosened the
access control on charge (int, Date, Date) to protected so that it can be
overridden.

abstract class Site {

public Dollars charge() {

// find last reading

int i = 0;

while (_readings[i] != null) i++;

int usage = _readings[i-1].amount() - _readings[i-2].amount();

Date end = _readings[i-1].date();

Date start = _readings[i-2].date();

start.setDate(start.getDate() + 1); //set to begining of period

return charge(usage, start, end);

}

abstract protected Dollars charge(int fullUsage, Date start, Date end);

}

The access control has to be loosened on the subclasses too. I’ve left the
variable names in the abstract method declaration even though they
are not necessary since I think they help communicate the use of the

377
method. Since I now have an abstract method the class is abstract, as it
should be.

Looking at the method, I can see that the much of the action lies in
working with the i-1 and i-2 readings. These are the last reading in the
readings array, and the next to last reading. This can be made much
clearer. I can start by defining a method to get me the last reading.

private Reading lastReading() {

return _readings[firstUnusedReadingsIndex() - 1];

};

This allows me to modify charge to:

public Dollars charge() {

// find last reading

int i = 0;

while (_readings[i] != null) i++;

int usage = lastReading() .amount() - _readings[i-2].amount();

Date end = lastReading() .date();

Date start = _readings[i-2].date();

start.setDate(start.getDate() + 1); //set to begining of period

return charge(usage, start, end);

}

I can do the same for the previous reading.

public Dollars charge() {

int usage = lastReading().amount() - previousReading() .amount();

Date end = lastReading().date();

Date start = previousReading() .date();

start.setDate(start.getDate() + 1); //set to begining of period

return charge(usage, start, end);

}

private Reading previousReading() {

return _readings[firstUnusedReadingsIndex() - 2];

}

The code is now much easier to read. However it will now run slower,
because every call to lastReading or previousReading will cause the array to
be traversed through the loop in firstUnusedReadingIndex . Since I’m cur-
rently refactoring I choose to ignore that. I will fix it with an optimiza-
tion later if it is important (I can easily cache the firstUnusedReadingsIndex
in a field).

While I’m on this method there is a couple of other things I will do. I
can make the usage calculation into its own method.

378 A LONGER EXAMPLE
public Dollars charge() {

Date end = lastReading().date();

Date start = previousReading().date();

start.setDate(start.getDate() + 1); //set to begining of period

return charge(lastUsage() , start, end);

}

private int lastUsage() {

return lastReading().amount() - previousReading().amount();

};

Since how the end is calculated is pretty clear, I could also remove its
temp. I’m not sure whether its not clearer, however, to leave it there to
indicate the role it is playing the method call. If I was in Smalltalk I
would probably remove it because Smalltalk has keywords for its
parameters, which communicate the role of each item in the method
call. Java has positional parameters, so I find I’m more inclined to use a

379
temp to show the role of the parameter. In the end these choices come

380 A LONGER EXAMPLE
down to what you and your colleagues find the easiest to understand.

Figure 15.7: After reorganizing the charge field

Resident ia lSi te
charge(usage, star t , end)
dayOfYear

T A X _ R A T E

Residental Site

date
amoun t

Reading

1000

summerEnd
summerSta r t
summerRa te
winterRate

Zone

1

Disabi l i tySite
charge(usage, star t , end)
dayOfYear

T A X _ R A T E
F U E L T A X C A P
C A P

Disability Site

Lifel ineSite
addRead ing
charge()
charge(usage)

T A X _ R A T E

Lifeline Site

1000BusinessSi te
addRead ing
charge()
charge(usage)

S T A R T R A T E
E N D R A T E
E N D A M O U N T
lastReading

Business Site

1000

Site
addRead ing
f i rs tUnusedReadingsIndex
charge()
charge(usage, start, end)
lastReading
previousReading
lastUsage

Site

381
Figure 15.7 shows where we are now. Decomposing the charge field
has added several method to the site.

Extracting a next day method

I would like to do something about the start date. Ideally I would like
a statement like start = previousReading().date()++ , but that isn’t legal
Java. An alternative would be to do something like start =

previousReading().date().nextDay() , but there is no method along those
lines in the class library (when I did this I was using 1.0 Java). I’m
treating the Java class library as a given, something I cannot refactor.
So my next step is to use Create Foreign Method (176 . This will create a
method that should be on Date, but instead I put it in my own class.
Then I can write start = nextDay (previousReading().date()) .

The way I would normally come up with a next day is to return a new
date object which is one day later. But this is not quite the same as
what the current code does:

Date start = previousReading().date();

start.setDate(start.getDate() + 1); //set to begining of period

The setDate method actually changes the day of the current date. To me
this as a very odd thing to do. I think of dates as values, things much
like integers and reals. Such things are immutable, there is no notion of
altering the number 3 to be some other value, instead you alter the
variable to point to a different number. This is different to people. If a
person has a name and you change her name, she is still the same per-
son. There is nothing you can change about a number in that way.

Make a clear distinction betwee Reference Objects (e.g. Person)
and Value Objects (e.g. Date). Value objects should always be
immutable.

Quantity is like that too, there is nothing you can change about the
quantity $3. Thus in any implementation of Quantity I make the
amount and the unit immutable: I set them in the constructor and pro-
vide no way of changing them. In Java Date is not like that, it has all
these set methods, yet I think of Date as a value object and thus it
should not be changed.

382 A LONGER EXAMPLE
The problem with allowing value objects to have mutable data is that it
leads to odd bugs. If you say:

x = new Quantity (3,�USD�);

y = x;

you don’t expect anything that you can do to y to change x. But with
this date that is not true. I can go:

x = new Date (�1 Jan 97�);

y = x;

y.setDate(2);

and x will change as well.

This has actually happened in the program I am refactoring. The tests
check that the value returned by charge() is correct for the various
cases. There is a side effect of this process, a changing of the dates in
the readings. The tests did not catch this.

One of the reasons the tests did not catch this is because the #$%^@
who wrote the tests forgot a useful testing rule. When you test a query
method, try testing it a few times in row. If the tester had done that, he
would have found the error because subsequent invocations o
charge() would have returned a different value. (Authors are supposed
to be omniscient, so I won’t tell you who wrote the tests.

This yields a couple of further points. One is, of course, that tests don’t
catch everything and your security in refactoring (as in any develop-
ment) is only as good as your tests. But it is no good bleating on about
how tests don’t guarantee correctness, tests are still your best weapon,
and you can incrementally improve tests as you go on. The second
point is that refactoring can help you find errors, as you spot odd little
things like that, much as code inspection does.

Refactoring is an active form of code inspection.

When I spot a bug like that I immediately update the tests so that they
catch this problem, and any obvious similar problems. A repeated call
to charge() does that nicely.

The next decision is to how to deal with it. Well I still need come up
with a nextDay method. I would like to do it by copying a date and add-
ing one to the new date with setDate, but Date is not cloneable, so I

383
can’t copy it with clone. I can easily get around that by using an appro-
priate constructor.

class Site...

public Dollars charge() {

Date end = lastReading().date();

Date start = nextDay(previousReading().date()) ;

return charge(lastUsage(), start, end);

}

private Date nextDay (Date arg) {

// foreign method - should be in Date

Date result = new Date (arg.getTime());

result.setDate(result.getDate() + 1);

return result;

}

A general principle I use in Java is not use the set… methods on date,
since they can easily lead to bugs of this nature. I do use it in nextDay,
however, because it is a foreign method, and should really be on Date.
Foreign methods have to treated with caution. They are not unreason-
able if there only one or two of them, but they can easily get out of con-
trol. If you find you have created more than two foreign methods it’s
time to use Create Extension (178) instead — I’ll come to that later.

384 A LONGER EXAMPLE

385
Figure 15.8: After creating the next day method

Resident ia lSi te
charge(usage, star t , end)
dayOfYear

T A X _ R A T E

Residental Site

date
amoun t

Reading

1000

summerEnd
summerSta r t
summerRa te
winterRate

Zone

1

Disabi l i tySite
charge(usage, star t , end)
dayOfYear

T A X _ R A T E
F U E L T A X C A P
C A P

Disability Site

Lifel ineSite
addRead ing
charge()
charge(usage)

T A X _ R A T E

Lifeline Site

1000BusinessSi te
addRead ing
charge()
charge(usage)

S T A R T R A T E
E N D R A T E
E N D A M O U N T
lastReading

Business Site

1000

Site
addRead ing
f i rs tUnusedReadingsIndex
charge()
charge(usage, s tar t , end)
las tReading
prev iousReading
las tUsage
nextDay

Site

386 A LONGER EXAMPLE
Figure 15.8 captures our current state of play, with the new foreign
method.

So far we have create a superclass site and brought residential and dis
ability sites under it. We’ve pulled up the data and some simple behav
ior. To really get at the heart of simplifying this program we have to
start working on the more complex behavior buried in the charge
method. It is good, however, to begin with a few simple things to begin
understanding the program. I also like to move around data before I
work on behavior, especially complex behavior like these charge meth-
ods.

Simplifying the Charge Methods

But now it is time for the big problem: the three-argument charge
methods. Let me refresh you on what they look like.

class ResidentialSite...

protected Dollars charge(int usage, Date start, Date end) {

Dollars result;

double summerFraction;

// Find out how much of period is in the summer

if (start.after(_zone.summerEnd()) || end.before(_zone.summerStart()))

summerFraction = 0;

else if (!start.before(_zone.summerStart()) && !start.after(_zone.summerEnd()) &&

!end.before(_zone.summerStart()) && !end.after(_zone.summerEnd()))

summerFraction = 1;

else { // part in summer part in winter

double summerDays;

if (start.before(_zone.summerStart()) || start.after(_zone.summerEnd())) {

// end is in the summer

summerDays = dayOfYear(end) - dayOfYear (_zone.summerStart()) + 1;

} else {

// start is in summer

summerDays = dayOfYear(_zone.summerEnd()) - dayOfYear (start) + 1;

};

Refactoring So Far

1) Starting a Hierarchy of Sites

387
summerFraction = summerDays / (dayOfYear(end) - dayOfYear(start) + 1);

};

result = new Dollars ((usage * _zone.summerRate() * summerFraction) +

(usage * _zone.winterRate() * (1 - summerFraction)));

result = result.plus(new Dollars (result.times(TAX_RATE)));

Dollars fuel = new Dollars(usage * 0.0175);

result = result.plus(fuel);

result = new Dollars (result.plus(fuel.times(TAX_RATE)));

return result;

}

class DisabilitySite...

protected Dollars charge(int fullUsage, Date start, Date end) {

Dollars result;

double summerFraction;

int usage = Math.min(fullUsage, CAP);

if (start.after(_zone.summerEnd()) || end.before(_zone.summerStart()))

summerFraction = 0;

else if (!start.before(_zone.summerStart()) && !start.after(_zone.summerEnd()) &&

!end.before(_zone.summerStart()) && !end.after(_zone.summerEnd()))

summerFraction = 1;

else {

double summerDays;

if (start.before(_zone.summerStart()) || start.after(_zone.summerEnd())) {

// end is in the summer

summerDays = dayOfYear(end) - dayOfYear (_zone.summerStart()) + 1;

} else {

// start is in summer

summerDays = dayOfYear(_zone.summerEnd()) - dayOfYear (start) + 1;

};

summerFraction = summerDays / (dayOfYear(end) - dayOfYear(start) + 1);

};

result = new Dollars ((usage * _zone.summerRate() * summerFraction) +

(usage * _zone.winterRate() * (1 - summerFraction)));

result = result.plus(new Dollars (Math.max(fullUsage - usage, 0) * 0.062));

result = result.plus(new Dollars (result.times(TAX_RATE)));

Dollars fuel = new Dollars(fullUsage * 0.0175);

result = result.plus(fuel);

388 A LONGER EXAMPLE
result = new Dollars (result.plus(fuel.times(TAX_RATE).min(FUEL_TAX_CAP)));

return result;

}

Extracting summerFraction

Its easy for my eyes to glaze over with big methods like that, but as I
run my eye over them I can see some similarities. The code I’ve high
lighted is identical (I’d bet good beer money that it was cut and
pasted). This code is there to determine the value of the temp
summerFraction. I can thus use Extract Method (114), and put the
extracted method into Site.

The first step in extracting a method is to identify any variables refer-
enced in the code that are local in scope to the routine. You can do this
by eye, or by using a find on the local scope variables. The local scope
variables are temps and parameters. In this start, end, and
summerFraction are the ones used by the candidate extract. Next I need
to consider if any of these values are altered. I treat altering a parame-
ter in Java as the height of bad taste, but I check anyway. The only one
of the three to be altered is summerFraction. If you have one locally
scoped variable that is altered, and that variable is used outside the
extracted code, then it makes sense to make the extracted code have a
return value. The temp sounds like a good name for the new method:
summerFraction

Each locally scoped variable that is used needs to be passed into the
new method as a parameter. SummerFraction is not altered between its
initialization and the entry into to candidate extraction, so we don’t
need to pass it in, I can just initialize it within the new method. So the
new method will have two parameters for the start and end dates.

I begin with just one class, I picked residential site at random. I create
the new method in that class (I’ll pull it up to site later). I first copy the
candidate extraction, put it into a new method, and compile it. Then I
remove the candidate extraction from the source method and replace it
with a method that calls the new method. In this case I find all uses o
summerFraction and replace them with references to the new method.
Then I test to see if I have broken anything.

class ResidentialSite...

protected Dollars charge(int usage, Date start, Date end) {

389
Dollars result;

result = new Dollars ((usage * _zone.summerRate() * summerFraction(start,end)) +

(usage * _zone.winterRate() * (1 - summerFraction(start,end))));

result = result.plus(new Dollars (result.times(TAX_RATE)));

Dollars fuel = new Dollars(usage * 0.0175);

result = result.plus(fuel);

result = new Dollars (result.plus(fuel.times(TAX_RATE)));

return result;

}

private double summerFraction(Date start, Date end) {

double summerFraction;

if (start.after(_zone.summerEnd()) || end.before(_zone.summerStart()))

summerFraction = 0;

else if (!start.before(_zone.summerStart()) && !start.after(_zone.summerEnd()) &&

!end.before(_zone.summerStart()) && !end.after(_zone.summerEnd()))

summerFraction = 1;

else { // part in summer part in winter

double summerDays;

if (start.before(_zone.summerStart()) || start.after(_zone.summerEnd())) {

// end is in the summer

summerDays = dayOfYear(end) - dayOfYear (_zone.summerStart()) + 1;

} else {

// start is in summer

summerDays = dayOfYear(_zone.summerEnd()) - dayOfYear (start) + 1;

};

summerFraction = summerDays / (dayOfYear(end) - dayOfYear(start) + 1);

};

return summerFraction;

}

All went well, so now I use Pull Up Method (271) to move the new
method up to site and compile. When I compile it complains that the
method dayOfYear is not in site (it was defined on the subclass). I could
look into moving that up too, but I will do that later. For now I’ll make
an appropriate abstract method in site (which means loosening the
access control in the subclasses)

class Site...

abstract int dayOfYear(Date arg);

390 A LONGER EXAMPLE
I test again and all is good. Now I remove the similar looking code
from disability site’s charge method and replace with the appropriate
call to summerFraction.

class DisabilitySite...

protected Dollars charge(int fullUsage, Date start, Date end) {

Dollars result;

int usage = Math.min(fullUsage, CAP);

result = new Dollars ((usage * _zone.summerRate() * summerFraction(start, end)) +

(usage * _zone.winterRate() * (1 - summerFraction(start, end))));

result = result.plus(new Dollars (Math.max(fullUsage - usage, 0) * 0.062));

result = result.plus(new Dollars (result.times(TAX_RATE)));

Dollars fuel = new Dollars(fullUsage * 0.0175);

result = result.plus(fuel);

result = new Dollars (result.plus(fuel.times(TAX_RATE).min(FUEL_TAX_CAP)));

return result;

}

391
Extracting a large method like that really helps the readability of the
code. If someone has used cut and paste when they shouldn’t, you can
often do this.

Figure 15.9 shows the program with the summer fraction moved up to
site.

Figure 15.9: After extracting summerFraction

Resident ia lSi te
charge(usage, star t , end)
dayOfYear

T A X _ R A T E

Residental Site

date
amoun t

Reading

1000

summerEnd
summerSta r t
summerRa te
winterRate

Zone

1

Disabi l i tySite
charge(usage, star t , end)
dayOfYear

T A X _ R A T E
F U E L T A X C A P
C A P

Disability Site

Lifel ineSite
addRead ing
charge()
charge(usage)

T A X _ R A T E

Lifeline Site

1000BusinessSi te
addRead ing
charge()
charge(usage)

S T A R T R A T E
E N D R A T E
E N D A M O U N T
lastReading

Business Site

1000

Site
addRead ing
f i rs tUnusedReadingsIndex
charge()
charge(usage, s tar t , end)
las tReading
prev iousReading
las tUsage
nex tDay
summerFraction
dayOfYear

Site

392 A LONGER EXAMPLE
Extracting the fuel and tax calculations

Now it’s easier to see the differences between the methods. The dis
ability case caps the amount sent in via a parameter. The later sections
of code do not use this capped value, so I decided to make my next
steps down there. Both methods have the two following lines in com-
mon

Dollars fuel = new Dollars(fullUsage * 0.0175);

result = result.plus(fuel);

 I can use Inline Temp (121) to remove the temp fuel with a new method.

class DisabilitySite

protected Dollars charge(int fullUsage, Date start, Date end) {

Dollars result;

int usage = Math.min(fullUsage, CAP);

result = new Dollars ((usage * _zone.summerRate() * summerFraction(start, end)) +

(usage * _zone.winterRate() * (1 - summerFraction(start, end))));

result = result.plus(new Dollars (Math.max(fullUsage - usage, 0) * 0.062));

result = result.plus(new Dollars (result.times(TAX_RATE)));

result = result.plus(fuelCharge(fullUsage)) ;

result = new Dollars

(result.plus(fuelCharge(fullUsage) .times(TAX_RATE).min(FUEL_TAX_CAP)));

return result;

}

class Site...

protected Dollars fuelCharge() {

return new Dollars(lastUsage() * FUEL_CHARGE_RATE);

}

protected static final double FUEL_CHARGE_RATE = 0.0175;

As I did that I also used Replace Magic Number with Symbolic Constant
(210) to name the fuel charge rate, and then Pull Up Method (271) on the
fuelCharge method and Pull Up Field (270) on the new constant.

At first sight it may seem odd to remove the temporary variable.
Again all I am doing is causing the fuelCharge to be calculated twice

393
instead of once. Again my argument would be that it really does no
harm, I can cache it later when I optimize. (You might say “why
bother” and leave the temp in place. Keep that in mind during the next
step.)

Now I will go at the next line, which is different in two methods.

class ResidentialSite {

protected Dollars charge(int usage, Date start, Date end) {

Dollars result;

result = new Dollars ((usage * _zone.summerRate() * summerFraction(start,end)) +

(usage * _zone.winterRate() * (1 - summerFraction(start,end))));

result = result.plus(new Dollars (result.times(TAX_RATE)));

result = result.plus(fuelCharge(usage));

result = new Dollars (result.plus(fuelCharge(usage).times(TAX_RATE)));

return result;

}

class DisabilitySite {

protected Dollars charge(int fullUsage, Date start, Date end) {

Dollars result;

int usage = Math.min(fullUsage, CAP);

result = new Dollars ((usage * _zone.summerRate() * summerFraction(start, end)) +

(usage * _zone.winterRate() * (1 - summerFraction(start, end))));

result = result.plus(new Dollars (Math.max(fullUsage - usage, 0) * 0.062));

result = result.plus(new Dollars (result.times(TAX_RATE)));

result = result.plus(fuelCharge(fullUsage));

result = new Dollars

(result.plus(fuelCharge(fullUsage).times(TAX_RATE).min(FUEL_TAX_CAP)));

return result;

}

Although they are different, they both do a similar thing. They both
add the taxes for the fuel charge to the result. In this case I will use

394 A LONGER EXAMPLE
Extract Method (114) again, but this time I will have two methods with
the same signature, one in each class.

class ResidentialSite {

protected Dollars charge(int usage, Date start, Date end) {

Dollars result;

result = new Dollars ((usage * _zone.summerRate() * summerFraction(start,end)) +

(usage * _zone.winterRate() * (1 - summerFraction(start,end))));

result = result.plus(new Dollars (result.times(TAX_RATE)));

result = result.plus(fuelCharge(usage));

result = result.plus(fuelChargeTaxes (usage));

return result;

}

protected Dollars fuelChargeTaxes(int usage) {

return new Dollars (fuelCharge(usage).times(TAX_RATE));

}

class DisabilitySite {

protected Dollars charge(int fullUsage, Date start, Date end) {

Dollars result;

int usage = Math.min(fullUsage, CAP);

result = new Dollars ((usage * _zone.summerRate() * summerFraction(start, end)) +

(usage * _zone.winterRate() * (1 - summerFraction(start, end))));

result = result.plus(new Dollars (Math.max(fullUsage - usage, 0) * 0.062));

result = result.plus(new Dollars (result.times(TAX_RATE)));

result = result.plus(fuelCharge(fullUsage));

result = result.plus(fuelChargeTaxes (fullUsage));

return result;

}

protected Dollars fuelChargeTaxes(int usage) {

return new Dollars (fuelCharge(usage).times(TAX_RATE).min(FUEL_TAX_CAP));

}

395
My master plan is now coming apparent to me. Charge looks like it
may turn out to be a Template Method [Gang of Four], if so I want to
decompose it and turn it into a sequence of identical calls to methods
that vary polymorphically using Form Template Method (289). I haven’t
really looked to see if this will work for the whole method yet, but I
might as well start that way. If two methods in different classes seems
to do the same thing, I might as well give them the same signature.

You might also now see an advantage in why I didn’t hang on to the
fuel temporary variable earlier. If I had done that then that would be
another locally scoped temp that I would have had to pass into the
fuelChargeTaxes method. All those temps and parameters make life
awkward. By replacing the temp with a method, I no longer pass it in,
I just call the method. If later I need to cache the value of the method,
that cache will work whenever the method is used.

Can you see that I could have done the same thing with the call to the
three parameter charge method in the first place? Usage, start, and end
can all be replaced with appropriate methods. I will do that later.

(You might wonder, why didn’t I do that earlier. Here is a confession
that you shouldn’t really see in a book like this. I have always followed
the habit of eliminating parameters when I refactor, but I never really
knew why, it was just a habit. Only in writing this chapter did I realize
why I did it.)

For now I will get back to working on this charge method. I have a
game plan to make this a template method, where else can I get ready
to do this? An obvious place is the taxes.

class Site {

protected Dollars taxes(Dollars arg) {

return new Dollars (arg.times(TAX_RATE));

}

protected static final double TAX_RATE = 0.05;

class ResidentialSite {

protected Dollars charge(int usage, Date start, Date end) {

Dollars result;

result = new Dollars ((usage * _zone.summerRate() * summerFraction(start,end)) +

(usage * _zone.winterRate() * (1 - summerFraction(start,end))));

396 A LONGER EXAMPLE
result = result.plus(taxes(result));

result = result.plus(fuelCharge(usage));

result = result.plus(fuelChargeTaxes(usage));

return result;

}

class DisabilitySite {

protected Dollars charge(int fullUsage, Date start, Date end) {

Dollars result;

int usage = Math.min(fullUsage, CAP);

result = new Dollars ((usage * _zone.summerRate() * summerFraction(start, end)) +

(usage * _zone.winterRate() * (1 - summerFraction(start, end))));

result = result.plus(new Dollars (Math.max(fullUsage - usage, 0) * 0.062));

result = result.plus(taxes(result));

result = result.plus(fuelCharge(fullUsage));

result = result.plus(fuelChargeTaxes(fullUsage));

return result;

}

Now I’m at the point where I’ve extracted the calculations of taxes and
fuel charges, leaving the position of Figure 15.10.

397
Turning the charge method into a template method

The next step takes a little thought. An obvious next move would be to
do something along these lines to disability site

protected Dollars charge(int fullUsage, Date start, Date end) {

Dollars result;

Figure 15.10: After extracting the fuel and tax calculations

Resident ia lSi te
charge(usage, star t , end)
dayOfYear
fuelChargeTaxes

Residental Site

date
amoun t

Reading

1000

summerEnd
summerSta r t
summerRa te
winterRate

Zone

1

Disabi l i tySite
charge(usage, star t , end)
dayOfYear
fuelChargeTaxes

F U E L T A X C A P
C A P

Disability Site

Lifel ineSite
addRead ing
charge()
charge(usage)

T A X _ R A T E

Lifeline Site

1000BusinessSi te
addRead ing
charge()
charge(usage)

S T A R T R A T E
E N D R A T E
E N D A M O U N T
lastReading

Business Site

1000

Site
addRead ing
f i rs tUnusedReadingsIndex
charge()
charge(usage, s tar t , end)
lastReading
prev iousReading
las tUsage
nex tDay
summerFrac t ion
dayOfYear
fuelCharge
taxes

FUEL CHARGE RATE
TAX_RATE

Site

398 A LONGER EXAMPLE
int usage = Math.min(fullUsage, CAP);

result = baseCharge(usage);

result = result.plus(overCapCharge (fullUsage - usage));

result = result.plus(taxes(result));

result = result.plus(fuelCharge(fullUsage));

result = result.plus(fuelChargeTaxes(fullUsage));

return result;

}

But if I do that, the charge method will have to be different between
the disability site and the residential site, foiling my master plan o
making charge a template method. Although I only formed this master
plan in the middle of refactoring this method, I still like it and want it
to succeed (template methods are good). So I look for a refactoring that
fits in with it. Such a move would mean extracting the highlighted
code in the following.

class DisabilitySite {

protected Dollars charge(int fullUsage, Date start, Date end) {

Dollars result;

int usage = Math.min(fullUsage, CAP);

result = new Dollars ((usage * _zone.summerRate() * summerFraction(start, end)) +

(usage * _zone.winterRate() * (1 - summerFraction(start, end))));

result = result.plus(new Dollars (Math.max(fullUsage - usage, 0) * 0.062));

result = result.plus(taxes(result));

result = result.plus(fuelCharge(fullUsage));

result = result.plus(fuelChargeTaxes(fullUsage));

return result;

}

If I do this I could make a single polymorphic method baseCharge. The
result looks like this.

class DisabilitySite ...

protected Dollars charge(int fullUsage, Date start, Date end) {

Dollars result;

399
result = baseCharge(fullUsage, start, end);

result = result.plus(taxes(result));

result = result.plus(fuelCharge(fullUsage));

result = result.plus(fuelChargeTaxes(fullUsage));

return result;

}

protected Dollars baseCharge(int arg, Date start, Date end) {

int cappedUsage = Math.min(arg, CAP);

Dollars result;

result = new Dollars (

(cappedUsage * _zone.summerRate() * summerFraction(start, end)) +

(cappedUsage * _zone.winterRate() * (1 - summerFraction(start, end)))

);

result = result.plus(new Dollars (Math.max(arg - cappedUsage, 0) * 0.062));

return result;

}

For ResidentialSite it looks like this.

class ResidentialSite ...

protected Dollars charge(int usage, Date start, Date end) {

Dollars result;

result = baseCharge(usage, start, end);

result = result.plus(taxes(result));

result = result.plus(fuelCharge(usage));

result = result.plus(fuelChargeTaxes(usage));

return result;

}

protected Dollars baseCharge(int usage, Date start, Date end) {

return new Dollars ((usage * _zone.summerRate() * summerFraction(start,end)) +

(usage * _zone.winterRate() * (1 - summerFraction(start,end))));

}

Now the two charge methods are identical, so I use Pull Up Method
(271) to move them (it?) up to the site class.

abstract class Site {

protected Dollars charge(int usage, Date start, Date end) {

Dollars result;

result = baseCharge(usage, start, end);

result = result.plus(taxes(result));

result = result.plus(fuelCharge(usage));

result = result.plus(fuelChargeTaxes(usage));

return result;

}

abstract protected Dollars baseCharge (int usage, Date start, Date end);

abstract protected Dollars fuelChargeTaxes(int usage);

400 A LONGER EXAMPLE
I also have to create abstract methods for baseCharge and
fuelChargeTaxes.

Now I have a statement of how you create a charge that reads like doc-
umentation, even without comments. Furthermore the commonality
and differences are clear between the two kinds of site, making it eas
ier to change them in the future, and also to add new kinds of site. I’ll
be testing that capability later as I blend the other two kinds of site into
the hierarchy. Figure 15.11 shows the classes at this point.

401
Removing the usage argument

Having two charge methods, is not ideal, especially since the 3-arg
charge method is now so simple. Some further refactoring will sim-
plify the logic further. I should be able to reduce the size of the param-
eter list for the various methods. The first target is the usage argument,

Figure 15.11: After turning charge into a template method

Resident ia lSi te
dayOfYear
fue lChargeTaxes
baseCharge

Residental Site

date
amoun t

Reading

1000

summerEnd
summerSta r t
summerRa te
winterRate

Zone

1

Disabi l i tySite
dayOfYear
fue lChargeTaxes
baseCharge

F U E L T A X C A P
C A P

Disability Site

Lifel ineSite
addRead ing
charge()
charge(usage)

T A X _ R A T E

Lifeline Site

1000BusinessSi te
addRead ing
charge()
charge(usage)

S T A R T R A T E
E N D R A T E
E N D A M O U N T
lastReading

Business Site

1000

Site
addRead ing
f i rs tUnusedReadingsIndex
charge()
charge(usage, start, end)
las tReading
prev iousReading
las tUsage
nex tDay
summerFrac t ion
dayOfYear
fue lCharge
taxes
baseCharge
fuelChargeTaxes

F U E L C H A R G E R A T E
T A X _ R A T E

Site

402 A LONGER EXAMPLE
which already has a method for it: lastUsage. I can use Inline Temp (121)
to get rid of the temp, and then Replace Parameter with Method (245).

To do this I need to find every reference to the string usage. If the refer
ence is in a method call or declaration I remove it. If it is in some body
code, I replace it with lastUsage. This causes quite a lot of changes, but
with the find and replace tools in editors it is actually quite easy to do.
Once I’d done all that, the code looked like this.

class Site...

public Dollars charge() {

Date end = lastReading().date();

Date start = nextDay(previousReading().date());

return charge(start, end);

}

protected Dollars charge(Date start, Date end) {

Dollars result;

result = baseCharge(start, end);

result = result.plus(taxes(result));

result = result.plus(fuelCharge());

result = result.plus(fuelChargeTaxes());

return result;

}

abstract protected Dollars baseCharge (Date start, Date end) ;

abstract protected Dollars fuelChargeTaxes() ;

protected Dollars fuelCharge() {

return new Dollars(lastUsage() * 0.0175);

}

class DisabilitySite...

protected Dollars baseCharge(Date start, Date end) {

int cappedUsage = Math.min(lastUsage() , CAP);

Dollars result;

result = new Dollars (

(cappedUsage * _zone.summerRate() * summerFraction(start, end)) +

(cappedUsage * _zone.winterRate() * (1 - summerFraction(start, end)))

);

result = result.plus(new Dollars (Math.max(lastUsage() - cappedUsage, 0) * 0.062));

return result;

}

protected Dollars fuelChargeTaxes() {

return new Dollars (fuelCharge() .times(TAX_RATE).min(FUEL_TAX_CAP));

}

class ResidentialSite {

protected Dollars baseCharge(Date start, Date end) {

403
return new Dollars ((lastUsage() * _zone.summerRate() * summerFraction(start,end)) +

(lastUsage() * _zone.winterRate() * (1 - summerFraction(start,end))));

}

protected Dollars fuelChargeTaxes() {

return new Dollars (fuelCharge() .times(TAX_RATE));

}

Replacing start and end with a date range

The other parameters to work on are the start and end dates. I can do
this quite easily as they are only used in determining the
summerFraction. I could replace them with methods such as
lastPeriodStart and lastPeriodEnd, but there is something else I would
like to do.

Starts and ends tend to come in pairs, and that pair has a meaning all
of itself. We are talking here about a period of time. The start and the
end are a classic data clump and should instead be attributes of a new
object, which I can create with Extract Component (166).

The whole object for any pair of values marked start and end is a Range
[Fowler, AP]. For a pair of dates in a typed language I will use a spe-
cific class DateRange. This is a common class for me, and I often have
one lying around. In this case I will build it up from scratch as I need it.
It starts simply as an encapsulated record.

import java.util.Date;

class DateRange {

public DateRange(Date start, Date end) {

_start = start;

_end = end;

}

public Date end() {

return _end;

}

public Date start() {

return _start;

}

private Date _end;

private Date _start;

}

Now I have the class I need to put it to use. A good candidate is
summerFraction

private double summerFraction(Date start, Date end) {

double summerFraction;

if (start.after(_zone.summerEnd()) || end.before(_zone.summerStart()))

404 A LONGER EXAMPLE
summerFraction = 0;

else if (!start.before(_zone.summerStart()) && !start.after(_zone.summerEnd()) &&

!end.before(_zone.summerStart()) && !end.after(_zone.summerEnd()))

summerFraction = 1;

else { // part in summer part in winter

double summerDays;

if (start.before(_zone.summerStart()) || start.after(_zone.summerEnd())) {

// end is in the summer

summerDays = dayOfYear(end) - dayOfYear (_zone.summerStart()) + 1;

} else {

// start is in summer

summerDays = dayOfYear(_zone.summerEnd()) - dayOfYear (start) + 1;

};

summerFraction = summerDays / (dayOfYear(end) - dayOfYear(start) + 1);

};

return summerFraction;

}

I can write a method to create the range object

class Site...

public DateRange lastPeriod() {

return new DateRange (nextDay(previousReading().date()), lastReading().date());

}

and then Replace Parameter with Method (245).

class Site ...

protected double summerFraction() {

double result; // I also changed this name to make it fit my normal usage

if (

lastPeriod().start() .after(_zone.summerEnd()) ||

lastPeriod().end() .before(_zone.summerStart())

)

result = 0;

else if (

!lastPeriod().start() .before(_zone.summerStart()) &&

!lastPeriod().start() .after(_zone.summerEnd()) &&

!lastPeriod().end() .before(_zone.summerStart()) &&

!lastPeriod().end() .after(_zone.summerEnd())

)

result = 1;

else { // part in summer part in winter

double summerDays;

if (

lastPeriod().start() .before(_zone.summerStart()) ||

lastPeriod().start() .after(_zone.summerEnd())

) {

// end is in the summer

summerDays = dayOfYear(lastPeriod().end()) -

dayOfYear (_zone.summerStart()) + 1;

} else {

405
// start is in summer

summerDays = dayOfYear(_zone.summerEnd()) -

dayOfYear (lastPeriod().start()) + 1;

};

result = summerDays / (dayOfYear(lastPeriod().end()) -

dayOfYear(lastPeriod().start()) + 1);

};

return result;

}

class ResidentialSite...

protected Dollars baseCharge() {

return new Dollars ((lastUsage() * _zone.summerRate() * summerFraction()) +

(lastUsage() * _zone.winterRate() * (1 - summerFraction())));

}

class DisabilitySite...

protected Dollars baseCharge() {

int cappedUsage = Math.min(lastUsage(), CAP);

Dollars result;

result = new Dollars ((cappedUsage * _zone.summerRate() * summerFraction()) +

(cappedUsage * _zone.winterRate() * (1 - summerFraction())));

result = result.plus(new Dollars (Math.max(lastUsage() - cappedUsage, 0) * 0.062));

return result;

}

Merging the charge methods

Now I can merge the two charge methods

class Site...

public Dollars charge() {

Dollars result;

result = baseCharge();

result = result.plus(taxes(result));

result = result.plus(fuelCharge());

result = result.plus(fuelChargeTaxes());

return result;

}

The taxes method doesn’t really need an argument, so again I Replace
Parameter with Method (245 .

public Dollars charge() {

Dollars result;

result = baseCharge();

result = result.plus(taxes());

result = result.plus(fuelCharge());

result = result.plus(fuelChargeTaxes());

return result;

406 A LONGER EXAMPLE
}

protected Dollars taxes() {

return new Dollars (baseCharge().times(TAX_RATE));

}

So all we have is a simple sum

public Dollars charge() {

return baseCharge().plus(taxes()).plus(fuelCharge()).plus(fuelChargeTaxes());

}

It doesn’t look quite as good as it would if we could overload +, but it
is still pretty clear.

With this I have given the charge calculation a clear structure, one that
allows me to separate out the things that are common between the
classes from those parts that are different. This makes it much easier to
modify the calculations and to add new ones. You can easily see which
changes will affect both classes, and understand the steps in building
the charge. The true test will come when we bring business and lifeline
sites into the structure. I don’t expect this structure to match exactly
(unless I’m very lucky), but it should be recognizable.

I didn’t start this exercise intending to do this. It was only by doing the
early decomposition that I understood enough about the method to
see that a template would work here.

You do the early refactorings to learn more about the program, these
set you up for later ones that really simplify the structure.

Refactoring So Far

1) Starting a Hierarchy of Sites

2) Simplifying the Charge Methods

407
Decomposing Site’s Long Methods

Now I’m salivating to see if the other two sites will fit the template.
However before I do that, I’d like to do some further simplification on

Figure 15.12: After merging the charge methods

Resident ia lSi te
dayOfYear
fue lChargeTaxes
baseCharge

Residental Site

date
amoun t

Reading

1000

summerEnd
summerSta r t
summerRa te
winterRate

Zone

1
Disabi l i tySite
dayOfYear
fue lChargeTaxes
baseCharge

F U E L T A X C A P
C A P

Disability Site

Lifel ineSite
addRead ing
charge()
charge(usage)

T A X _ R A T E

Lifeline Site

1000BusinessSi te
addRead ing
charge()
charge(usage)

S T A R T R A T E
E N D R A T E
E N D A M O U N T
lastReading

Business Site

1000

Site
addRead ing
f i rs tUnusedReadingsIndex
charge()
lastReading
prev iousReading
las tUsage
nex tDay
summerFrac t ion
dayOfYear
fue lCharge
taxes
baseCharge
fue lChargeTaxes

F U E L C H A R G E R A T E
T A X _ R A T E

Site

start
end

Date Range

408 A LONGER EXAMPLE
the two classes I have. The more I do this, the more I understand the
hierarchy as it currently stands, and the easier it will be to add new
classes. Of course this means I’ll make decisions which I will have to
change when I bring in the other classes. But by making things simpler
now I’ll make those later changes easier.

Don’t let fear of the future stop you from doing a refactoring now.
Refactorings aren’t difficult to change, and learning you gain
repays the effort.

The next thing I do is start looking though the methods of the three
classes in the browser. I’m sniffing for bad smells, and get a good whif
of over-long methods. The first method that catches my nose is
summerFraction

class Site ...

protected double summerFraction() {

double result;

if (

lastPeriod().start().after(_zone.summerEnd()) ||

lastPeriod().end().before(_zone.summerStart())

)

result = 0;

else if (

!lastPeriod().start().before(_zone.summerStart()) &&

!lastPeriod().start().after(_zone.summerEnd()) &&

!lastPeriod().end().before(_zone.summerStart()) &&

!lastPeriod().end().after(_zone.summerEnd())

)

result = 1;

else { // part in summer part in winter

double summerDays;

if (

lastPeriod().start().before(_zone.summerStart()) ||

lastPeriod().start().after(_zone.summerEnd())

) {

// end is in the summer

summerDays = dayOfYear(lastPeriod().end()) -

dayOfYear (_zone.summerStart()) + 1;

} else {

// start is in summer

summerDays = dayOfYear(_zone.summerEnd()) -

dayOfYear (lastPeriod().start()) + 1;

};

result = summerDays / (dayOfYear(lastPeriod().end()) -

409
dayOfYear(lastPeriod().start()) + 1);

};

return result;

}

Decomposing summerFraction�s conditionals

There are a lot of conditionals here, which are hard to fit on a page. I
will use Decompose Conditional (136), a useful cure for this disease. I do
this by extracting a method from each part of the conditional state-
ment.

protected double summerFraction() {

double result;

if (isLastPeriodOutsideSummer())

result = 0;

else if (

!lastPeriod().start().before(_zone.summerStart()) &&

!lastPeriod().start().after(_zone.summerEnd()) &&

!lastPeriod().end().before(_zone.summerStart()) &&

!lastPeriod().end().after(_zone.summerEnd())

)

result = 1;

else { // part in summer part in winter

double summerDays;

if (

lastPeriod().start().before(_zone.summerStart()) ||

lastPeriod().start().after(_zone.summerEnd())

) {

// end is in the summer

summerDays = dayOfYear(lastPeriod().end()) -

dayOfYear (_zone.summerStart()) + 1;

} else {

// start is in summer

summerDays = dayOfYear(_zone.summerEnd()) -

dayOfYear (lastPeriod().start()) + 1;

};

result = summerDays / (dayOfYear(lastPeriod().end()) -

dayOfYear(lastPeriod().start()) + 1);

};

return result;

}

protected boolean isLastPeriodOutsideSummer() {

return lastPeriod().start().after(_zone.summerEnd()) ||

lastPeriod().end().before(_zone.summerStart());

}

410 A LONGER EXAMPLE
As I look at the isLastPeriodOutsideSummer method I think that I should
be able to simply this considerably by using the periods as whole
objects. In this method I really want to know if the lastPeriod has no
overlap with the zone’s summer. The first step would be to get zone to
be able to tell you its summer as a date range.

class Zone ...

public DateRange summer() {

return new DateRange (_summerStart, _summerEnd);

}

I can then rewrite isLastPeriodOutsideSummer

protected boolean isLastPeriodAllSummer() {

return lastPeriod().start().after(_zone.summer().end()) ||

lastPeriod().end().before(_zone.summer().start());

}

As such that is no improvement. But now I can write a disjoint method
for DateRange,

class DateRange

public boolean disjoint(DateRange arg) {

return arg.start().after(_end) || arg.end().before(_start);

}

and make isLastPeriodOutsideSummer much simpler

protected boolean isLastPeriodOutsideSummer() {

return _zone.summer().disjoint(lastPeriod());

}

In fact I don’t think the body of isLastPeriodOutsideSummer is any less
communicative than the method name, so I will use Inline Method (120)
to inline it back into summerFraction.

protected double summerFraction() {

double result;

if (_zone.summer().disjoint(lastPeriod()))

result = 0;

else if (

!lastPeriod().start().before(_zone.summerStart()) &&

!lastPeriod().start().after(_zone.summerEnd()) &&

!lastPeriod().end().before(_zone.summerStart()) &&

!lastPeriod().end().after(_zone.summerEnd())

)

result = 1;

else { // part in summer part in winter

double summerDays;

if (

lastPeriod().start().before(_zone.summerStart()) ||

411
lastPeriod().start().after(_zone.summerEnd())

) {

// end is in the summer

summerDays = dayOfYear(lastPeriod().end()) -

dayOfYear (_zone.summerStart()) + 1;

} else {

// start is in summer

summerDays = dayOfYear(_zone.summerEnd()) -

dayOfYear (lastPeriod().start()) + 1;

};

result = summerDays / (dayOfYear(lastPeriod().end()) -

dayOfYear(lastPeriod().start()) + 1);

};

return result;

}

I get the strong feeling that I can make this whole method into a
method on DateRange, I will keep that goal in mind as I continue to
decompose the method. I’ll do the next conditional. This is pretty com-
plicated and as my brain starts to hurt from figuring out what it is
doing I look at the result. The result is effectively saying that the
lastPeriod is entirely within the summer. Thus if I write a contains
method on DateRange

class DateRange ...

public boolean contains(DateRange arg) {

return arg.start().after(_start) && arg.end().before(_end);

}

then I can rewrite it as

protected double summerFraction() {

double result;

if (_zone.summer().disjoint(lastPeriod()))

result = 0;

else if (_zone.summer().contains(lastPeriod()))

result = 1;

else { // part in summer part in winter

double summerDays;

if (

lastPeriod().start().before(_zone.summerStart()) ||

lastPeriod().start().after(_zone.summerEnd())

) {

// end is in the summer

summerDays = dayOfYear(lastPeriod().end()) -

dayOfYear (_zone.summerStart()) + 1;

} else {

// start is in summer

summerDays = dayOfYear(_zone.summerEnd()) -

dayOfYear (lastPeriod().start()) + 1;

412 A LONGER EXAMPLE
};

result = summerDays / (dayOfYear(lastPeriod().end()) -

dayOfYear(lastPeriod().start()) + 1);

};

return result;

}

As I look at the next bit of code I see that the code is doing one thing i
the start is within the summer period, and another if the end is within
the summer. What happens if neither are within the summer, that is if
the summer is contained within the last period. The code is written
with the assumption that that cannot happen (billing periods are
monthly, shorter than a summer). Again none of the test cases probe it
(I need to find a new tester). I add a test case to probe it, and indeed it
fails. As I refactor this code I will fix that bug.

413
I feel I’m heading in the right direction (Figure 15.13 shows the posi-
tion so far), but to make further progress I need to step back a bit. If I
think about this as a manipulation of date ranges then I can solve it by
asking what the length of the last period is, and what the length of the
overlap range between the last period and the summer is. I can substi-

Figure 15.13: After beginning to decompose summerFraction

Resident ia lSi te
dayOfYear
fue lChargeTaxes
baseCharge

Residental Site

date
amoun t

Reading

1000

summer

summerEnd
summerSta r t
summerRa te
winterRate

Zone

1
Disabi l i tySite
dayOfYear
fue lChargeTaxes
baseCharge

F U E L T A X C A P
C A P

Disability Site

Lifel ineSite
addRead ing
charge()
charge(usage)

T A X _ R A T E

Lifeline Site

1000BusinessSi te
addRead ing
charge()
charge(usage)

S T A R T R A T E
E N D R A T E
E N D A M O U N T
lastReading

Business Site

1000

Site
addRead ing
f i rs tUnusedReadingsIndex
charge()
lastReading
prev iousReading
las tUsage
nex tDay
summerFrac t ion
dayOfYear
fue lCharge
taxes
baseCharge
fue lChargeTaxes

F U E L C H A R G E R A T E
T A X _ R A T E

Site

disjoint
contains

start
end

Date Range

414 A LONGER EXAMPLE
tute this algorithm for the existing one. Before I can do this I need to
add some further behavior to date range to determine the intersection
of two date ranges and to determine the length of a date range.

Extending Date

To determine the length of a date range I need to be able to subtract
two dates. Sadly the Date class in java does not give me this feature,
hence this use of dayOfYear which is really a foreign method. I need to
make a new series of foreign methods on date. The amount of foreign
methods I will need is too much and will soon get out of hand. What I
really need to do is to fix the Date class. Since I cannot get at the Date
class, I can deal with it by using Create Extension (178). I can do this is
two ways, either by subclassing Date or by making a decorator [Gang of
Four] for Date. The easiest way seems to be to use a subclass. I begin
with defining just the suitable constructors.

import java.util.Date;

class MfDate extends Date {

public MfDate (Date arg) {

super (arg.getTime());

}

public MfDate (String dateString) {

super (dateString);

};

}

Whenever I create an extension I provide a constructor that takes what
I’m extending as an argument. This makes it easy for code to switch
between the two if needed. I’ve also provided the constructor for
String since I know I use that in my test code.

At this point I have to decide: do I just use the extension where I need
it (by converting to MfDate within certain methods) or do I use it every-
where. If I only use it where I need it I will be forever jumping back
and forth between Date and MfDate and getting confused. If I change it
everywhere I really do need to change it everywhere. Well my code is
not too big and I do have a global find capability. So I use the global
find to find every occurrence of Date.

There is only one point where there is a problem.

class Site

415
private Date nextDay (Date arg) {

// foreign method - should be in Date

Date result = new Date (arg.getTime()) ;

result.setDate(result.getDate() + 1);

return result;

}

If course I do need to move nextDay to MfDate, now that I have created
the extension. But for the moment I will fix the problem, compile and
test, and then move it. I don’t want too long a gap between tests. I
could solve this by defining a constructor that takes a long argument,
but what I really want here is a copy. So I would do better by giving
MfDate a copy method.

class MfDate extends Date implements Cloneable...

public Object clone() {

try {

return super.clone();

} catch (CloneNotSupportedException e) {

//should not happen

throw new InternalError(e.toString());

}

}

class Site...

private MfDate nextDay (MfDate arg) {

// foreign method - should be on Date

MfDate result = (MfDate) arg.clone();

result.setDate(result.getDate() + 1);

return result;

}

That works, but I don’t like the fact that the client of MfDate has to be
responsible for the downcast. I can avoid that by using Encapsulate
Downcast (258).

class MfDate

public MfDate copy() {

return (MfDate) clone();

}

class Site

private MfDate nextDay (MfDate arg) {

// foreign method - should be on Date

MfDate result = arg.copy();

result.setDate(result.getDate() + 1);

return result;

}

With that the system recompiles using MfDates everywhere.

416 A LONGER EXAMPLE
Now I might as well move the foreign method to its proper home
using Move Method (160). First I create it in the new place, adjusting the
code as necessary.

class MfDate

public MfDate nextDay() {

MfDate result = copy();

result.setDate(result.getDate() + 1);

return result;

}

Next I find all the references to the original method and replace them
with calls to the new method. There are two ways to do this in Java
environments. You can either do a search and replace, or you can
remove the old method, and let the compiler find where you need to
make changes. There was one reference.

class Site

public DateRange lastPeriod() {

return new DateRange (previousReading().date().nextDay() , lastReading().date());

}

Whichever way you do the replacement make sure you remove the
original method before you compile and test. Otherwise if you miss
one you can get some funny results. Also look to see if the method is
redefined anywhere within the inheritance hierarchy, the compiler
won’t catch that either.

To do the date subtraction I need to use the dayOfYear method currently
in residential site and disability site. These methods are identical and
are both foreign methods that should really by on MfDate. So I will
move them over. First I move DayOfYear to MfDate.

class MfDate {

int dayOfYear() {

int result;

switch (getMonth()) {

case 0:

result = 0;

break;

case 1:

result = 31;

break;

case 2:

result = 59;

break;

case 3:

result = 90;

417
break;

case 4:

result = 120;

break;

case 5:

result = 151;

break;

case 6:

result = 181;

break;

case 7:

result = 212;

break;

case 8:

result = 243;

break;

case 9:

result = 273;

break;

case 10:

result = 304;

break;

case 11:

result = 334;

break;

default :

throw new IllegalArgumentException();

};

result += getDate();

//check leap year

if ((getYear()%4 == 0) && ((getYear() % 100 != 0) || ((getYear() + 1900) % 400 == 0))) {

result++;

};

return result;

}

Still an ugly method, but I will deal with that later. Now I find all
places that call it, as it turns out they are within summerFraction.

protected double summerFraction() {

double result;

if (_zone.summer().disjoint(lastPeriod()))

result = 0;

else if (_zone.summer().contains(lastPeriod()))

result = 1;

else { // part in summer part in winter

double summerDays;

if (

lastPeriod().start().before(_zone.summerStart()) ||

418 A LONGER EXAMPLE
lastPeriod().start().after(_zone.summerEnd())

) {

// end is in the summer

summerDays = lastPeriod().end().dayOfYear() -

_zone.summerStart().dayOfYear() + 1;

} else {

// start is in summer

summerDays = _zone.summerEnd().dayOfYear() -

lastPeriod().start().dayOfYear() + 1;

};

result = summerDays / (lastPeriod().end().dayOfYear() -

lastPeriod().start().dayOfYear() + 1);

};

return result;

}

Then I remove dayOfYear from ResidentialSite and DisabilitySite,
remove the abstract method declaration I had put on site, compile and
test.

Now I can get ready to do the date subtraction. I do, however, have a
little problem. The date manipulations in summerFraction assume that
periods do not cross year boundaries. A date subtraction routine
should work with multiple years. Do I implement for the more general
case, or just the simpler case present in the system I am refactoring? It
seems like a dangerous assumption to me, but for the moment I will
leave it as it is (with a suitable check). I can come back and fix that
later. (The leap years make it not completely trivial.)

class MfDate...

public int minus(MfDate arg) {

requireSameYear (arg); // TK fix this to cross years

return dayOfYear() - arg.dayOfYear();

}

private void requireSameYear(MfDate arg) {

if (getYear() != arg.getYear())

throw new IllegalArgumentException ("Arguments must be in same year");

}

Now I can define length for a DateRange

class DateRange

public int length() {

return _end.minus(_start) + 1;

}

The next thing I need to do is to define an intersection method for
DateRange.

419
public DateRange intersection(DateRange arg) {

MfDate newStart = (_start.after(arg.start())) ?

_start :

arg.start();

MfDate newEnd = (_end.before(arg.end())) ?

_end:

arg.end();

return new DateRange(newStart, newEnd);

}

With that I am now ready (finally) to work on summerFraction. Figure
15.14 shows the what the date and date range classes look like.

Substituting an algorithm for summerFraction

I shall change summerFraction by using Substitute Algorithm (132). This
refactoring can often be a bigger jump than most refactorings. Rather
than make small, behavior preserving transformations, I am making a
larger transformation which I hope will be behavior preserving. Errors
do occur, and I find this refactoring can often lead to debugging.

Here is my first shot at the new summerFraction

protected double summerFraction() {

Figure 15.14: Date and Date Range classes

Date

nextDay
dayOfYear
minus

MfDate

java.ut i l

disjoint
contains
length
intersection

start
end

Date Range

420 A LONGER EXAMPLE
DateRange periodInSummer = lastPeriod().intersection(_zone.summer());

return periodInSummer.length() / lastPeriod().length();

}

It didn’t work, several test cases failed. In most refactoring my reaction
to such a failure is to back out and try a smaller step, but Substitute
Algorithm (132) doesn’t really lend itself to smaller steps. One thing I
can do to help debugging is to reintroduce the old version
summerFraction under the name oldSummerFraction. I can then use it to
help me debug by alerting me whenever the result of summerFraction
and oldSummerFraction differ.

protected double summerFraction() {

DateRange periodInSummer = lastPeriod().intersection(_zone.summer());

double result = periodInSummer.length() / lastPeriod().length();

if (result != oldSummerFraction())

System.out.println (�new sf was � + String.valueOf(result) +

� old was � + String.valueOf (oldSummerFraction()) + � for � + lastPeriod())

}

A little debugging quickly shows me that I am getting a lot of length
zero summer periods when I shouldn’t. The problem lies in using inte
ger division; I need to use a cast.

protected double summerFraction() {

DateRange periodInSummer = lastPeriod().intersection(_zone.summer());

return (double) periodInSummer.length() / lastPeriod().length();

}

Now I get a different series of errors, all involving ranges with nega-
tive lengths. These are caused by the intersection method generating
ranges whose start is after the end. I could treat these as errors, but in
practice I’ve found that it is all right to allow these, treating them as
empty ranges.

class DateRange

public boolean isEmpty() {

return _start.after(_end);

}

I need to adjust length to take this into account.

class DateRange

public int length() {

if (isEmpty()) return 0;

return _end.minus(_start) + 1;

}

421
With that the tests work, including the one I added to probe for the
bug that existed in the old version.

Decomposing the Base Charges

The next item to catch my eye is the baseCharge methods on residential
and disability sites

class ResidentialSite

protected Dollars baseCharge() {

return new Dollars ((lastUsage() * _zone.summerRate() * summerFraction()) +

(lastUsage() * _zone.winterRate() * (1 - summerFraction())));

}

class DisabilitySite

protected Dollars baseCharge() {

int cappedUsage = Math.min(lastUsage(), CAP);

Dollars result;

result = new Dollars ((cappedUsage * _zone.summerRate() * summerFraction()) +

(cappedUsage * _zone.winterRate() * (1 - summerFraction())));

result = result.plus(new Dollars (Math.max(lastUsage() - cappedUsage, 0) * 0.062));

return result;

}

The highlighted section is similar to both methods and can be
extracted into the superclass. The difference is that the disability site
caps the usage before applying this calculation while the residential
site does not. I can deal with this by using Extract Method (114) and
Parameterize Method (240).

class Site

Dollars residentialBaseCharge (int usage) {

return new Dollars ((usage * _zone.summerRate() * summerFraction()) +

(usage * _zone.winterRate() * (1 - summerFraction())));

}

class ResidentialSite

protected Dollars baseCharge() {

return residentialBaseCharge (lastUsage()) ;

}

class DisabilitySite

protected Dollars baseCharge() {

int cappedUsage = Math.min(lastUsage(), CAP);

Dollars result;

result = residentialBaseCharge (cappedUsage) ;

422 A LONGER EXAMPLE
result = result.plus(new Dollars (Math.max(lastUsage() - cappedUsage, 0) * 0.062));

return result;

}

As I look at this code I wonder whether the zone should not calculate
the residentialBaseCharge. To do this I would have to move the behavior
for summerFraction over there as well, and send it the usage and the
lastPeriod as parameters. I don’t have a strong feeling about it at the
moment, but it would be useful if we had some zones with different
factors than the summer period and the two rates. At the moment the
site needs to know a lot about the zone, while if I moved the behavior
over to zone it would only need to work with an int and a date range.
It would also pull some behavior out of the Site class, which is getting
fairly involved now. To be honest it seems six of one and half a dozen
of the other to me, and in many cases I would leave it as it is for the
moment. Since I’m demonstrating the techniques though, I might as
well do it.

To move the residentialBaseCharge over to zone I look at the methods
that are called by residentialBaseCharge. For each one I have to decide:
do I move over the result of the method as a parameter, or do I move
over the whole method. I decide to move over summerFraction and send
in the usage and the period as parameters.

I do this by putting the two methods into zone, adjusting them to their
new home and compiling. Then I find all the references to the moved
methods by commenting them out and seeing where the compiler
complains. I fix the problems, compile and test. Then I remove the
commented out methods.

class Zone...

double summerFraction(DateRange usagePeriod) {

DateRange periodInSummer = usagePeriod.intersection(summer());

return (double) periodInSummer.length() / usagePeriod.length();

}

Dollars baseCharge (int usage, DateRange usagePeriod) {

return new Dollars ((usage * _summerRate * summerFraction(usagePeriod)) +

(usage * _winterRate * (1 - summerFraction(usagePeriod))));

}

class ResidentialSite...

protected Dollars baseCharge() {

return _zone.baseCharge (lastUsage(), lastPeriod()) ;

423
}

class DisabilitySite...

protected Dollars baseCharge() {

int cappedUsage = Math.min(lastUsage(), CAP);

Dollars result;

result = _zone.baseCharge (cappedUsage, lastPeriod()) ;

result = result.plus(new Dollars (Math.max(lastUsage() - cappedUsage, 0) * 0.062));

return result;

}

I can do some more with disability site’s baseCharge method. First I can
use Inline Temp (121) on cappedUsage.

class DisabilitySite ...

protected Dollars baseCharge() {

Dollars result;

result = _zone.baseCharge (usageBelowCap(), lastPeriod());

result = result.plus(new Dollars (Math.max(lastUsage() -

usageBelowCap(), 0) * 0.062));

return result;

}

protected int usageBelowCap() {

return Math.min(lastUsage(), CAP);

}

I do similar for the amount above the cap, and Replace Magic Number
with Symbolic Constant (210).

protected Dollars baseCharge() {

Dollars result;

result = _zone.baseCharge (usageBelowCap(), lastPeriod());

result = result.plus(new Dollars (usageAboveCap() * ABOVE_CAP_RATE));

return result;

}

protected int usageAboveCap() {

return Math.max(lastUsage() - usageBelowCap(), 0);

}

private static final double ABOVE_CAP_RATE = 0.062;

With that Site and its subclasses are pretty well factored (Figure 15.15).
All the methods are small and understandable. You might not choose
the same refactorings as I did. In the end what counts is what is most
understandable to your team. I find very small methods easier to deal
with, but you might prefer a larger granularity.

424 A LONGER EXAMPLE
Fixing up MfDate and Date Range

I do some more looking at the classes I have been working on and spot
two other methods to clean up. First is DateRange’s intersection

public DateRange intersection(DateRange arg) {

MfDate newStart = (_start.after(arg.start())) ?

Figure 15.15: After decomposing the base charge methods

Resident ia lSi te
fue lChargeTaxes
baseCharge

Residental Site

date
amoun t

Reading

1000

s u m m e r
summerFraction
baseCharge

summerEnd
summerSta r t
summerRa te
winterRate

Zone

1

Disabi l i tySite
fue lChargeTaxes
baseCharge
usageBelowCap
usageAboveCap

F U E L T A X C A P
C A P
ABOVE CAP RATE

Disability Site

Lifel ineSite
addRead ing
charge()
charge(usage)

T A X _ R A T E

Lifeline Site

1000BusinessSi te
addRead ing
charge()
charge(usage)

S T A R T R A T E
E N D R A T E
E N D A M O U N T
lastReading

Business Site

1000

Site
addRead ing
f i rs tUnusedReadingsIndex
charge()
lastReading
prev iousReading
las tUsage
fuelCharge
taxes
baseCharge
fue lChargeTaxes

F U E L C H A R G E R A T E
T A X _ R A T E

Site

425
_start :

arg.start();

MfDate newEnd = (_end.before(arg.end())) ?

_end:

arg.end();

return new DateRange(newStart, newEnd);

}

I can improve this by making a latest and earliest for MfDate.

class DateRange

public DateRange intersection(DateRange arg) {

return new DateRange(

MfDate.latest(_start, arg.start()), MfDate.earliest(_end, arg.end()));

}

class MfDate

public static MfDate earliest(MfDate arg1, MfDate arg2) {

return (arg1.before(arg2)) ?

arg1 :

arg2;

}

public static MfDate latest(MfDate arg1, MfDate arg2) {

return (arg1.after(arg2)) ?

arg1 :

arg2;

}

A bigger looking problem is dayOfYear.

int dayOfYear() {

int result;

switch (getMonth()) {

case 0:

result = 0;

break;

case 1:

result = 31;

break;

case 2:

result = 59;

break;

case 3:

result = 90;

break;

case 4:

result = 120;

break;

case 5:

result = 151;

break;

426 A LONGER EXAMPLE
case 6:

result = 181;

break;

case 7:

result = 212;

break;

case 8:

result = 243;

break;

case 9:

result = 273;

break;

case 10:

result = 304;

break;

case 11:

result = 334;

break;

default :

throw new IllegalArgumentException();

};

result += getDate();

//check leap year

if ((getYear()%4 == 0) && ((getYear() % 100 != 0) || ((getYear() + 1900) % 400 == 0))) {

result++;

};

return result;

}

The long case statement takes up a lot of vertical space (and thus
scrolls off the bottom of my browser). Another alternative is to use a
searching literal [Beck].

int dayOfYear() {

int result;

int[] monthNumbers = {0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334};

result = monthNumbers[getMonth()];

result += getDate();

//check leap year

if ((getYear()%4 == 0) && ((getYear() % 100 != 0) || ((getYear() + 1900) % 400 == 0))) {

result++;

};

return result;

}

I use Inline Temp (121).

427
int dayOfYear() {

int result;

result = daysToStartOfMonth() ;

result += getDate();

//check leap year

if ((getYear()%4 == 0) && ((getYear() % 100 != 0) || ((getYear() + 1900) % 400 == 0))) {

result++;

};

return result;

}

private int daysToStartOfMonth() {

int[] monthNumbers = {0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334};

return monthNumbers[getMonth()];

}

The leap year determination can also be extracted.

int dayOfYear() {

int result = daysToStartOfMonth() + getDate();

if (isLeapYear()) result++;

return result;

}

boolean isLeapYear() {

return (getYear()%4 == 0) && ((getYear() % 100 != 0) || ((getYear() + 1900) % 400 == 0));

}

In doing this I noticed another bug, the leap year will add one to the
result even if the date is before the 28 Feb. I add a test to confirm and
fix the bug.

class MfDate

int dayOfYear() {

int result = daysToStartOfMonth() + getDate();

if (isLeapYear() & this.after(new Date (getYear(), 1, 29))) result++;

return result;

}

While I’m working on date I would like to make the date subtraction
work across years. I’m too lazy to figure out the algorithm, so I pinch it
from the Smalltalk image

class MfDate

public int minus(MfDate arg) {

return (getYear() == arg.getYear()) ?

dayOfYear() - arg.dayOfYear() : // shortcut

daysSince1901() - arg.daysSince1901();

}

428 A LONGER EXAMPLE
public int daysSince1901(){

if (getYear() < 1) throw new IllegalArgumentException();

int result;

int yearIndex = getYear() - 1;

result = yearIndex * 365;

result += yearIndex / 4; // ordinary leap years

result += (yearIndex + 300) / 400; // leap centuries

result -= yearIndex / 100; // non-leap centuries

result += dayOfYear() - 1;

return result;

}

I will leave it not working for the year 1900. I haven’t tested to see i
any of this works before the Java epoch (Jan 1 1970) in any case. Such
dates are outside the current requirements of this program, so there’s
no need to worry about them just now. Figure 15.16 shows the date
and date range classes.

Figure 15.16: MfDate and Date Range after cleaning up

Date

nex tDay
dayOfYear
minus
earliest
latest
daysToStartOfMonth
isLeapYear
daysSince1901

MfDate

java.ut i l

disjoint
conta ins
length
intersect ion
isEmpty

start
end

Date Range

429
Now site and its subclasses are pretty nicely factored. I’ve whittled
down some long methods, and as a result moved some behavior
around to better places. The date class is doing much more now, and
the date range class is something that is already useful (just look at
how much simpler summerFraction is now), and I’m sure will make
modification easier in the future.

Adding Lifeline Site to the Hierarchy

Now its time to take another site and refactor it into the Site hierarchy.
I will now work on lifeline site.

I begin by making lifeline site a subclass of site. The compiler com-
plains that I haven’t defined site’s abstract methods, so I put in some
placeholders. It’s important to throw exceptions here, I’ve been bitten
before by doing nothing and forgetting that I should have put some
real code in here.

public class LifelineSite extends Site {

protected Dollars baseCharge() {

throw new AbstractMethodError("undefined baseCharge");

}

protected Dollars fuelChargeTaxes () {

throw new AbstractMethodError("undefined fuelChargeTaxes");

}

More seriously it complains because Site does not have a no-argument
constructor. Site currently has a Zone but Lifeline Sites do not have
zones. For the moment I will create a Lifeline site with a null Zone.

class LifelineSite {

public LifelineSite() {

super (null);

};

Refactoring So Far

1) Starting a Hierarchy of Sites

2) Simplifying the Charge Methods

3) Decomposing Site’s Long Methods

430 A LONGER EXAMPLE
First I will look at how the site handles readings. Lifeline site does it in
a different way to that for the two prior sites. It adds the readings to
the beginning instead of the end of the array.

public void addReading(Reading newReading) {

Reading[] newArray = new Reading[_readings.length + 1];

System.arraycopy(_readings, 0, newArray, 1, _readings.length);

newArray[0] = newReading;

_readings = newArray;

}

The charge method thus also works differently

public Dollars charge() {

int usage = _readings[0].amount() - _readings[1].amount();

return charge(usage);

}

It also does not compute a period for the charge.

As I inspect the methods I think that if I remove the readings array and
alter the charge method to use lastReading and previousReading the
thing will still work. I can test that hypothesis by changing it and run
ning the tests. I remove the field _readings in lifeline site, and remove
the addReading method. That way I will inherit the usual behavior fro
site. Then I alter the charge method to make use of the new behavior.

public Dollars charge()

{

int usage = lastReading() .amount() - previousReading() .amount();

return charge(usage);

}

The compiler would tell me if anything else was using addReading or
_readings and nothing was. The tests tell me if all is still working fine,
and they come back OK.

In that step, as with the future ones, I am using the understanding I
have gained of the site’s behavior through the previous refactoring to
help me with this refactoring. I’m expecting lifeline site to show a lot of
similarity with the previous sites. I won’t be flattened if it doesn’t, but I
will be helped if it does.

I see that lifeline site has its own TAX_RATE member. I can delete this,
since the same value is on site.

431
Making Lifeline Site’s charge fit the template

I now need to deal with charge() and compare it with Site’s template
method.

class Site

public Dollars charge() {

return baseCharge().plus(taxes()).plus(fuelCharge()).plus(fuelChargeTaxes());

}

class LifelineSite

private Dollars charge (int usage) {

double base = Math.min(usage,100) * 0.03;

if (usage > 100) {

base += (Math.min (usage,200) - 100) * 0.05;

};

if (usage > 200) {

base += (usage - 200) * 0.07;

};

Dollars result = new Dollars (base);

Dollars tax = new Dollars (result.minus(new Dollars(8)).

max(new Dollars (0)).times(TAX_RATE));

result = result.plus(tax);

Dollars fuelCharge = new Dollars (usage * 0.0175);

result = result.plus (fuelCharge);

return result.plus (new Dollars (fuelCharge.times(TAX_RATE)));

}

Site assumes four calculations added together: base, tax, fuel charge,
and the tax on the fuel charge. The fuel charge stuff is an obvious first
target. I started with replacing the highlighted code with method calls,
but was caught out because I hadn’t redefined fuelChargeTaxes. So I can
start with just the fuelCharge.

private Dollars charge (int usage) {

double base = Math.min(usage,100) * 0.03;

if (usage > 100) {

base += (Math.min (usage,200) - 100) * 0.05;

};

if (usage > 200) {

base += (usage - 200) * 0.07;

};

Dollars result = new Dollars (base);

432 A LONGER EXAMPLE
Dollars tax = new Dollars (result.minus(new Dollars(8)).

max(new Dollars (0)).times(TAX_RATE));

result = result.plus(tax);

result = result.plus (fuelCharge ());

return result.plus (new Dollars (fuelCharge().times(TAX_RATE)));

}

Looking at the implementations for fuelChargeTaxes, I can see that the
LifelineSite�s method is the same as that for residential site. So I pull
residential site’s method up to site with Pull Up Method (271). I do that
by simply cutting it from residential site and pasting it in site. Then I
compile and test. Once that is done I can remove the placeholder from
disability site and call the method fro charge.

private Dollars charge (int usage) {

double base = Math.min(usage,100) * 0.03;

if (usage > 100) {

base += (Math.min (usage,200) - 100) * 0.05;

};

if (usage > 200) {

base += (usage - 200) * 0.07;

};

Dollars result = new Dollars (base);

Dollars tax = new Dollars (result.minus(new Dollars(8)).

max(new Dollars (0)).times(TAX_RATE));

result = result.plus(tax);

result = result.plus (fuelCharge());

return result.plus (fuelChargeTaxes());

}

Working upwards the next thing I see is the calculation for the taxes. It
looks like I can extract that into taxes.

private Dollars charge (int usage) {

double base = Math.min(usage,100) * 0.03;

if (usage > 100) {

base += (Math.min (usage,200) - 100) * 0.05;

};

if (usage > 200) {

base += (usage - 200) * 0.07;

};

433
Dollars result = new Dollars (base);

result = result.plus(taxes(result));

result = result.plus (fuelCharge());

return result.plus (fuelChargeTaxes());

}

protected Dollars taxes (Dollars base) {

return new Dollars (base.minus(new Dollars(8)).

max(new Dollars (0)).times(TAX_RATE));

}

The form does not exactly match the template, since I have to pass in
the result to taxes as an argument. That’s only a temporary problem
and I will deal with it soon.

The top bit looks like lifeline site’s base charge method.

private Dollars charge (int usage) {

Dollars result = baseCharge();

result = result.plus(taxes(result));

result = result.plus (fuelCharge());

return result.plus (fuelChargeTaxes());

}

protected Dollars baseCharge() {

double result = Math.min(lastUsage(),100) * 0.03;

if (lastUsage() > 100) {

result += (Math.min (lastUsage(),200) - 100) * 0.05;

};

if (lastUsage() > 200) {

result += (lastUsage() - 200) * 0.07;

};

return new Dollars (result);

}

All I need to do is fix the taxes method by Replace Parameter with
Method (245), and I can eliminate the charge method on lifeline site.

class Site

public Dollars charge() {

return baseCharge().plus(taxes()).plus(fuelCharge()).plus(fuelChargeTaxes());

}

class LifelineSite

protected Dollars taxes () {

434 A LONGER EXAMPLE
return new Dollars (baseCharge() .minus(new Dollars(8)).

max(new Dollars (0)).times(TAX_RATE));

}

That all went very smoothly. The basic method was the same as the
previous cases, probably they all shared a common heritage of cut and
paste. Figure 15.17 shows lifeline site as part of the hierarchy.

Figure 15.17: After making lifeline site a subclass of site

Resident ia lSi te
baseCharge

Residental Site

date
amoun t

Reading

1000

s u m m e r
summerFrac t ion
baseCharge

summerEnd
summerSta r t
summerRa te
winterRate

Zone

0..1

Disabi l i tySite
fue lChargeTaxes
baseCharge
usageBe lowCap
usageAboveCap

F U E L T A X C A P
C A P
A B O V E C A P R A T E

Disability Site

Lifel ineSite
baseCharge
taxes

Lifeline SiteBusinessSi te
addRead ing
charge()
charge(usage)

S T A R T R A T E
E N D R A T E
E N D A M O U N T
lastReading

Business Site

1000

Site
addRead ing
f i rs tUnusedReadingsIndex
charge()
lastReading
prev iousReading
las tUsage
fuelCharge
taxes
baseCharge
fue lChargeTaxes

F U E L C H A R G E R A T E
T A X _ R A T E

Site

435
Refactoring Lifeline Site’s baseCharge

I think there is some simplification I can do with the lifeline site’s
baseCharge method, however. The code looks somewhat repetitive. I
think I should be able to factor it with extracting a parameterized
method. I start with the first bit of code.

class LifelineSite

protected Dollars baseCharge() {

double result = usageUnder(100) * 0.03;

if (lastUsage() > 100) {

result += (Math.min (lastUsage(),200) - 100) * 0.05;

};

if (lastUsage() > 200) {

result += (lastUsage() - 200) * 0.07;

};

return new Dollars (result);

}

protected int usageUnder(int limit) {

return Math.min(lastUsage(),limit);

}

UsageUnder works for that bit, but I need to introduce the conditional
and the previous value for it to work for the 200 limit.

protected Dollars baseCharge() {

double result = usageInRange(0, 100) * 0.03;

result += usageInRange (100,200) * 0.05;

if (lastUsage() > 200) {

result += (lastUsage() - 200) * 0.07;

};

return new Dollars (result);

}

protected int usageInRange(int start, int end) {

if (lastUsage() > start) return Math.min(lastUsage(),end) - start;

else return 0;

}

I can then apply it to the topmost part of the range

protected Dollars baseCharge() {

double result = usageInRange(0, 100) * 0.03;

result += usageInRange (100,200) * 0.05;

result += usageInRange (200, Integer.MAX_VALUE) * 0.07;

return new Dollars (result);

}

436 A LONGER EXAMPLE
This all works, but there are few too many rules to using it. The pro
grammer has to ensure that the values are set up so the lower number
match the upper numbers, and that the top number is set to Inte
ger.MAX_VALUE. I would prefer something where you could set things
up with an array of bounds and values. I feel an object coming on. I
would like it to work like this

//pseudo Java !

RateTable table = { 0.03, 100

0.05, 200

0.07};

return table.value(lastUsage());

I often like to think about how I would like to use an object before I try
creating one. From this I can get a sense of what the methods look like.
But I now have enough to try it out.

class RateTable {

public RateTable(double[] table) {

_table = table;

}

private double[] _table;

}

The key lies in its behavior. I need to move the usageInRange method
over to it.

private int usageInRange(int amount, int start, int end) {

if (amount > start) return Math.min(amount,end) - start;

else return 0;

}

Then I need to a create value method to work over the array. One pos
sibility is something along the following lines.

// not working code!

public int value(int amount) {

double result = 0;

for (int i=0; i < _table.length; i += 2) {

result += usageInRange(amount, _table[i], _table[i-2]) * _table [i+1]);

}

return new Dollars (result);

}

The trouble with this is that there is far too much special interpretation
of the array indices, not to mention of how to fix it to support the max
imum value, or how to deal with an array that would contain both
reals and ints.

437
A better idea is to use two arrays. Just because the constructor only
uses one doesn’t mean the class can’t change it into two.

public RateTable(double[] arg) {

int arrayLengths = arg.length / 2 + 1;

_rates = new double[arrayLengths];

_limits = new int[arrayLengths];

int argIndex = 0;

for (int i = 0; i < (arrayLengths - 1); i++) {

_rates[i] = arg[argIndex++];

_limits[i] = (int) arg[argIndex++];

};

_rates[arrayLengths - 1] = arg [arg.length -1];

_limits[arrayLengths - 1] = Integer.MAX_VALUE;

}

That’s a messy method, but it seems to set the rate table up in the right
way. It makes value easier to write.

public Dollars value(int amount) {

double result = 0;

result = usageInRange(amount, 0, _limits[0]) * _rates[0];

for (int i=1; i < _rates.length; i++)

result += usageInRange(amount, _limits[i-1], _limits[i]) * _rates[i];

return new Dollars (result);

}

I now have a useful rate table class (Figure 15.18

I can then alter baseCharge.

protected Dollars baseCharge() {

double [] table = { 0.03, 100,

0.05, 200,

0.07};

return new Dollars (new RateTable(table).value(lastUsage()));

}

Figure 15.18: Rate table class

usageInRange
value

rates
l imits

Rate Table

438 A LONGER EXAMPLE
Well it took a bit of fiddling to get the constructor to work but it does
now work. Was it worth the change? I don’t think so. The new class
certainly makes it much easier to write baseCharge, but the new class is
rather complicated to deal with. I’m sure I can refactor it into a better
shape, but I’m not sure its worth the effort to simplify one method. For
the moment I will change baseCharge back to what it was at the start of
this section.

protected Dollars baseCharge() {

double result = Math.min(lastUsage(),100) * 0.03;

if (lastUsage() > 100) {

result += (Math.min (lastUsage(),200) - 100) * 0.05;

};

if (lastUsage() > 200) {

result += (lastUsage() - 200) * 0.07;

};

return new Dollars (result);

}

A false move like this does happen from time to time in refactoring.
You see something that looks like a simplification, and find out that it
seems to make things more complex. In these cases you just have to
chalk it up to experience and back out of the change. The aim is to
make the code simpler, not more complicated.

Changing _readings to a Vector

At the moment the readings field is a 1000 size array. Arrays are awk
ward in this situation. You just know that at some point someone is
going to add the 1001th element. You also know that if you make the
array too big in the first place (like Integer.MAX_VALUE) then you will
waste a lot of memory. What we need is an array that can grow as we
need it. Java has a Vector class for that very purpose.

The readings field can be set up as a vector

private Vector _readings = new Vector();

I need to alter those methods that access it. To find those I do a find
using the editor.

public void addReading(Reading newReading) {

_readings.addElement(newReading);

}

private int firstUnusedReadingsIndex () {

439
return _readings.size();

}

protected int lastUsage() {

return lastReading().amount() - previousReading().amount();

}

public Reading lastReading() {

return (Reading) _readings.lastElement();

}

public Reading previousReading() {

return (Reading) _readings.elementAt(_readings.size() - 2);

}

Those do the trick and also make the code easier to read.
FirstUnusedReadingsIndex is not necessary any more so I can remove it.
The one problem with vectors is that you have to downcast anything
you take out of it. So I ensure that lastReading and previousReading
encapsulate the downcasting.

This ability to change the data structure of the class, without altering
the interface, is one of the joys of an OO language. In performance tun-
ing it is quite possible that we would find a hotspot in the access or
update of the readings vector. Again we should be able to change its
implementation easily to provide performance improvements at that
time.

Maintaining the invariant for the readings

The way the Site class works, there is an assumption in the Site class
about the readings, that is that the readings are in order of dates, earli-
est first. There is, however, nothing to stop someone from adding a
reading that would violate this assumption. The class as an internal
invariant which says that the readings are in date order. In a language
such as Eiffel, we could code this invariant directly into the class. This
is not so easy in Java. However we can improve matters by consider-
ing what operations could change the state of the invariant, causing it
to become false. The only operation to do this is the addReading opera-
tion. We need to add a clause to addReading to check for incorrect dates.

public void addReading(Reading newReading) {

if (newReading.date().before(lastReading().date()))

// do something ;

_readings.addElement(newReading);

}

440 A LONGER EXAMPLE
What action should we take? The site could choose to insert the read
ing in the appropriate place, instead of adding it at the end, but that
would invalidate previous uses of charge. It may be that later itera-
tions of this program will give it the ability to handle these readings
intelligently, but all it can do for the moment is throw an exception.

Now I’ve decided to throw an exception, I have to decide whether I
throw a checked or unchecked exception. The Java texts emphasize
that you should use checked exceptions, indeed they imply that you
should rarely throw unchecked exceptions. I’m not so sure about this
rule. Checked exceptions are good, in that you force the user to decide
what to do when they go wrong, but they can lead to very cluttered
code. Every calling program needs to decide how to handle the excep
tion, if they cannot decide they have to propagate the exception, and
the decision making.

I prefer to think about it in terms of Design By Contact. Is the fact that
the date of the new reading be later than existing readings part of the
pre-condition of the addReading method? If so then it is the callers
responsibility to check that before the call addReading, and addReading
should not throw a checked exception. AddReading should only throw a
checked exception if you decide that it is addReading�s responsibility to
check for that condition.

It’s hard to make a definitive answer from here, since it depends on the
context of addReading from the overall program, and we are only look
ing at this section of the program. However since all the knowledge o
whether it is a problem or not lies within the site, I will make it a
checked exception.

public void addReading(Reading newReading) throws IncorrectReadingException {

if (newReading.date().before(lastReading().date()))

throw new IncorrectReadingException ("Reading is before previous reading");

_readings.addElement(newReading);

}

The code complies, but runs into a problem when it executes. The first
time this method is used, lastReading tries to read from an empty vec-
tor, and throws a NoSuchElementException. As I look at it I suppose I
should alter lastReading to return a null if the _readings vector is empty,
but I would still have to alter addReading to deal with the null. I could

441
avoid that by creating a null object for reading, but that is a lot of effort
for one case. So the simplest thing to do is

public void addReading(Reading newReading) throws IncorrectReadingException {

if (!_readings.isEmpty() && newReading.date().before(lastReading().date()))

throw new IncorrectReadingException ("Reading is before previous reading");

_readings.addElement(newReading);

}

If I need to adjust lastReading for an empty vector, I can do that later.
The condition is rather long winded however, so I extract it.

public void addReading(Reading newReading) throws IncorrectReadingException {

if (isNotLatestReading(newReading))

throw new IncorrectReadingException ("Reading is before previous reading");

_readings.addElement(newReading);

}

private boolean isNotLatestReading(Reading arg) {

return !_readings.isEmpty() && arg.date().before(lastReading().date());

}

And, now I’ve added the check, I also add a test to check that it is
working

class LifelineSiteTester

void testIncorrectReading() throws Exception {

_subject.addReading(new Reading (25, new MfDate ("8 Sep 1997")));

try {

_subject.addReading(new Reading (125, new MfDate ("1 Sep 1997")));

assert(false);

} catch (IncorrectReadingException e) {}

}

Lifeline site fitted in without too much trouble, and I also took the
trouble to clean up the way site deals with readings. The rate table idea

Refactoring So Far

1) Starting a Hierarchy of Sites

2) Simplifying the Charge Methods

3) Decomposing Site’s Long Methods

4) Adding Lifeline Site to the Hierarchy

442 A LONGER EXAMPLE
had possibilities, and might be useful in the future, but is not worth its
keep for now.

Adding Business Site to the Hierarchy

Now its time to work on the final class, business site. My first move is
to make it a subclass of Site and to compile. It tells me it needs an
implementation for baseCharge and a no-arg constructor. The former
seems reasonable but the latter is irritating. I only need it because busi
ness site, like lifeline site, does not have a zone. Instead I can add a no
arg constructor to site, and remove the no-arg constructor from lifeline
site.

class Site...

Site() {}

This does not affect residential site or disability site for they have their
own constructors. They cannot use the no-arg constructor unless I add
one.

Business site also has a variation on addReading and how the readings
are obtained.

class BusinessSite...

public void addReading(Reading newReading) {

_readings[++lastReading] = newReading;

}

public Dollars charge() {

int usage = _readings[lastReading].amount() - _readings[lastReading -1].amount();

return charge(usage);

}

So my first move, as with lifeline site is to remove addReading, change
charge, and run the tests to see if all still works.

public Dollars charge() {

int usage = lastReading().amount() - previousReading().amount();

return charge(usage);

}

Indeed it did.

Making Business Site’s charge method fit the tem-

443
plate

Now it’s time to look at the one argument charge method, and to see if
we can break it down into the usual four items to sum. Currently
charge looks like this

private Dollars charge(int usage) {

Dollars result;

if (usage == 0) return new Dollars(0);

double t1 = START_RATE - ((END_RATE * END_AMOUNT) - START_RATE) / (END_AMOUNT - 1);

double t2 = ((END_RATE * END_AMOUNT) - START_RATE) *

Math.min(END_AMOUNT, usage) / (END_AMOUNT - 1);

double t3 = Math.max(usage - END_AMOUNT, 0) * END_RATE;

result = new Dollars (t1 + t2 + t3);

// fuel charge

result = result.plus(new Dollars (usage * 0.0175));

// add in the taxes

Dollars base = new Dollars (result.min(new Dollars (50)).times(0.07));

if (result.isGreaterThan(new Dollars (50))) {

base = new Dollars (base.plus(result.min(new Dollars(75)).minus

(new Dollars(50)).times(0.06)));

};

if (result.isGreaterThan(new Dollars (75))) {

base = new Dollars (base.plus(result.minus(new Dollars(75)).times(0.05)));

};

result = result.plus(base);

return result;

}

The situation is slightly different. This time we have a base charge, a
fuel charge, but a combined taxes method that does an algorithm on
the combined amount. This method will not fit our current template
method. But it may be possible to alter the template method to make it
all fit. Our first task is to decompose this method to make it more pal-
atable. We can begin by using the superclass’s fuel charge.

private Dollars charge(int usage) {

Dollars result;

if (usage == 0) return new Dollars(0);

double t1 = START_RATE - ((END_RATE * END_AMOUNT) - START_RATE) / (END_AMOUNT - 1);

444 A LONGER EXAMPLE
double t2 = ((END_RATE * END_AMOUNT) - START_RATE) * Math.min(END_AMOUNT, usage) / (END_AMOUNT

- 1);

double t3 = Math.max(usage - END_AMOUNT, 0) * END_RATE;

result = new Dollars (t1 + t2 + t3);

//add the fuel charge

result = result.plus(fuelCharge());

// add the taxes

Dollars base = new Dollars (result.min(new Dollars (50)).times(0.07));

if (result.isGreaterThan(new Dollars (50))) {

base = new Dollars (base.plus(result.min(new Dollars(75)).minus(new

Dollars(50)).times(0.06)));

};

if (result.isGreaterThan(new Dollars (75))) {

base = new Dollars (base.plus(result.minus(new Dollars(75)).times(0.05)));

};

result = result.plus(base);

return result;

}

We can then extract the baseCharge.

private Dollars charge(int usage) {

Dollars result = baseCharge() ;

result = result.plus(fuelCharge());

// add the taxes

Dollars base = new Dollars (result.min(new Dollars (50)).times(0.07));

if (result.isGreaterThan(new Dollars (50))) {

base = new Dollars (base.plus(result.min(new Dollars(75)).minus(new

Dollars(50)).times(0.06)));

};

if (result.isGreaterThan(new Dollars (75))) {

base = new Dollars (base.plus(result.minus(new Dollars(75)).times(0.05)));

};

result = result.plus(base);

return result;

}

public Dollars baseCharge() {

if (lastUsage() == 0) return new Dollars(0);

double t1 = START_RATE - ((END_RATE * END_AMOUNT) - START_RATE) / (END_AMOUNT - 1);

double t2 = ((END_RATE * END_AMOUNT) - START_RATE) *

Math.min(END_AMOUNT, lastUsage()) / (END_AMOUNT - 1);

double t3 = Math.max(lastUsage() - END_AMOUNT, 0) * END_RATE;

return new Dollars (t1 + t2 + t3);

}

445
And then the taxes

private Dollars charge(int usage) {

Dollars result = baseCharge();

result = result.plus(fuelCharge());

result = result.plus(taxes());

return result;

}

protected Dollars taxes() {

Dollars taxable = baseCharge().plus(fuelCharge());

Dollars result = new Dollars (taxable.min(new Dollars (50)).times(0.07));

if (taxable.isGreaterThan(new Dollars (50))) {

result = new Dollars (result.plus(taxable.min(new Dollars(75)).minus(

new Dollars(50)).times(0.06)));

};

if (taxable.isGreaterThan(new Dollars (75))) {

result = new Dollars (result.plus(taxable.minus(new Dollars(75)).times(0.05)));

};

return result;

}

We can now alter the template method to work with this site. First I
change the name of the current taxes method in Site to baseTaxes. When
I do this I need to first look to see if any subclass implements taxes. I
can do that with a global search. Lifeline site does this so I rename
taxes in both site and lifeline site. Next I need to check which methods
call taxes. I can do this by either a text search or by compiling. The
compiler tells me that only charge calls taxes. I now add a taxes
method on site that works for the three other sites and test.

class Site...

public Dollars charge() {

return baseCharge().plus(fuelCharge()).plus(taxes());

}

protected Dollars taxes() {

return baseTaxes().plus(fuelChargeTaxes());

}

Now site’s template method is in the right form, I can remove the
charge methods on business site. Business site is now a fully function-
ing member of the site family, as Figure 15.19 illustrates.

446 A LONGER EXAMPLE
A Second Attempt to Use a Rate Table

Business site’s method for taxes has a very familiar form.

protected Dollars taxes() {

Dollars taxable = baseCharge().plus(fuelCharge());

Dollars result = new Dollars (taxable.min(new Dollars (50)).times(0.07));

Figure 15.19: After business site joined the happy family

Resident ia lSi te
baseCharge

Residental Site

date
amoun t

Reading

s u m m e r
summerFrac t ion
baseCharge

summerEnd
summerSta r t
summerRa te
winterRate

Zone

0..1

Disabi l i tySite
fue lChargeTaxes
baseCharge
usageBe lowCap
usageAboveCap

F U E L T A X C A P
C A P
A B O V E C A P R A T E

Disability Site

Lifel ineSite
baseCharge
baseTaxes

Lifeline Site

BusinessSi te
baseCharge
taxes

S T A R T R A T E
E N D R A T E
E N D A M O U N T

Business Site

Site
addRead ing
charge()
lastReading
prev iousReading
las tUsage
fuelCharge
baseTaxes
baseCharge
fue lChargeTaxes
isNotLatestReading
taxes

F U E L C H A R G E R A T E
T A X _ R A T E

Site

✻

447
if (taxable.isGreaterThan(new Dollars (50))) {

result = new Dollars (result.plus(taxable.min(new Dollars(75)).minus

(new Dollars(50)).times(0.06)));

};

if (taxable.isGreaterThan(new Dollars (75))) {

result = new Dollars (result.plus(taxable.minus(new Dollars(75)).times(0.05)));

};

return result;

}

The form is exactly the same as that for Lifeline’s site’s base charge.
This makes me want to revisit the rate table class (see p age437), since I
will now have two places to use it. First I dig it out and plug it into
BusinessSite.taxes and test.

class BusinessSite

protected Dollars taxes() {

Dollars taxable = baseCharge().plus(fuelCharge());

double [] table = { 0.07, 50,

0.06, 75,

0.05};

return new Dollars (new RateTable(table).value(taxable.amount()));

}

I can do some extraction to make that clearer.

class BusinessSite...

protected Dollars taxes() {

return new Dollars (taxTable() .value(taxable().amount()));

}

protected Dollars taxable () {

return baseCharge().plus(fuelCharge());

}

protected RateTable taxTable() {

double [] tableData = { 0.07, 50,

0.06, 75,

0.05};

return new RateTable (tableData);

}

I will do the same for lifeline site

class LifelineSite...

protected Dollars baseCharge() {

return new Dollars (baseChargeTable().value(lastUsage()));

}

protected RateTable baseChargeTable() {

448 A LONGER EXAMPLE
double [] tableData = { 0.03, 100,

0.05, 200,

0.07};

return new RateTable (tableData);

}

Now I’m going to actually use RateTable I want to refactor its code to
make it easier to understand. The main bit that concerns me is the con
structor.

class RateTable...

public RateTable(double[] arg) {

int arrayLengths = arg.length / 2 + 1;

_rates = new double[arrayLengths];

_limits = new int[arrayLengths];

int argIndex = 0;

for (int i = 0; i < (arrayLengths - 1); i++) {

_rates[i] = arg[argIndex++];

_limits[i] = (int) arg[argIndex++];

};

_rates[arrayLengths - 1] = arg [arg.length -1];

_limits[arrayLengths - 1] = Integer.MAX_VALUE;

}

Using vectors seems like it would simplify things a lot, but Vectors
must contain objects, not reals or ints, so we would have a lot of down-

449
casting and conversion in the value method. For the moment nothing
really occurs to me that I can do to it, so I will let it be (Figure 15.20).

Decomposing Business Site’s baseCharge

Another awkward looking method is business site’s baseCharge.

Figure 15.20: After introducing the rate table

Resident ia lSi te
baseCharge

Residental Site

date
amoun t

Reading

s u m m e r
summerFrac t ion
baseCharge

summerEnd
summerSta r t
summerRa te
winterRate

Zone

0..1

Disabi l i tySite
fue lChargeTaxes
baseCharge
usageBe lowCap
usageAboveCap

F U E L T A X C A P
C A P
A B O V E C A P R A T E

Disability Site

Lifel ineSite
baseCharge
baseTaxes
baseChargeTable

Lifeline Site

BusinessSi te
baseCharge
taxes
taxable
taxTable

S T A R T R A T E
E N D R A T E
E N D A M O U N T

Business Site

Site
addRead ing
charge()
lastReading
prev iousReading
las tUsage
fuelCharge
baseTaxes
baseCharge
fue lChargeTaxes
isNotLatestReading
taxes

F U E L C H A R G E R A T E
T A X _ R A T E

Site

✻

450 A LONGER EXAMPLE
protected Dollars baseCharge() {

if (lastUsage() == 0) return new Dollars(0);

double t1 = START_RATE - ((END_RATE * END_AMOUNT) - START_RATE) / (END_AMOUNT - 1);

double t2 = ((END_RATE * END_AMOUNT) - START_RATE) *

Math.min(END_AMOUNT, lastUsage()) / (END_AMOUNT - 1);

double t3 = Math.max(lastUsage() - END_AMOUNT, 0) * END_RATE;

return new Dollars (t1 + t2 + t3);

}

I can refactor this by first looking at the way the lastUsage is used. One
part, up to the END_AMOUNT is multiplied by a factor to make t2. That part
over END_AMOUNT is multiplied by the END_RATE. I can thus divide the
lastUsage into its two parts with methods.

protected Dollars baseCharge() {

if (lastUsage() == 0) return new Dollars(0);

double t1 = START_RATE - ((END_RATE * END_AMOUNT) - START_RATE) / (END_AMOUNT - 1);

double t2 = ((END_RATE * END_AMOUNT) - START_RATE) *

usageBelowLimit() / (END_AMOUNT - 1);

double t3 = usageAboveLimit() * END_RATE;

return new Dollars (t1 + t2 + t3);

}

protected int usageAboveLimit () {

return Math.max(lastUsage() - END_AMOUNT, 0);

}

protected int usageBelowLimit() {

return Math.min(END_AMOUNT, lastUsage());

}

The usageBelowLimit is being multiplied by a static factor that is calcu-
lated from the current static contsants. I can factor this out.

protected Dollars baseCharge() {

if (lastUsage() == 0) return new Dollars(0);

double t1 = START_RATE - belowLimitRate() ;

double t2 = usageBelowLimit() * belowLimitRate() ;

double t3 = usageAboveLimit() * END_RATE;

return new Dollars (t1 + t2 + t3);

}

protected static double belowLimitRate() {

return ((END_RATE * END_AMOUNT) - START_RATE) / (END_AMOUNT - 1);

}

Finally I can rename the temps to something that better reflects my
understanding of their use

protected Dollars baseCharge() {

451
if (lastUsage() == 0) return new Dollars(0);

double constant = START_RATE - belowLimitRate();

double chargeBelowLimit = usageBelowLimit() * belowLimitRate();

double chargeAboveLimit = usageAboveLimit() * END_RATE;

return new Dollars (constant + chargeBelowLimit + chargeAboveLimit);

}

With that, the classes end up looking like Figure 15.21. The code is now
much more amenable to changes in the charge calculations for the
existing sites, and the addition of new sites. As we add new sites, with
new rules, there may be some further refactoring needed, just as hap-
pened with the business site. But many new sites and charge changes
should only involve one or two of the now very focused methods.
Refactoring never stops, it is a continuous process of improvement to a
program.

This is a long example, but it gives you a taste of how refactoring
works in practice. At the beginning you only have a vague idea of
what to do. You start by refactoring little things you can see just to
understand how the system works. As your understanding increases,
and as the code clarifies under your manipulations, you see the bigger
picture. Then you can direct the refactoring a little more. But you must

Refactoring So Far

1) Starting a Hierarchy of Sites

2) Simplifying the Charge Methods

3) Decomposing Site’s Long Methods

4) Adding Lifeline Site to the Hierarchy

5) Adding Business Site to the Hierarchy

452 A LONGER EXAMPLE
always be responsive to the state of the code, looking for necessary
complexity and bad smells.

Figure 15.21: Final state of the classes

Resident ia lSi te
baseCharge

Residental Site

date
amoun t

Reading

s u m m e r
summerFrac t ion
baseCharge

summerEnd
summerSta r t
summerRa te
winterRate

Zone

0..1

Disabi l i tySite
fue lChargeTaxes
baseCharge
usageBe lowCap
usageAboveCap

F U E L T A X C A P
C A P
A B O V E C A P R A T E

Disability Site

Lifel ineSite
baseCharge
baseTaxes
baseChargeTab le

Lifeline Site

BusinessSi te
baseCharge
taxes
taxable
taxTable
usageAboveLimit
usageBelowLimit
belowLimitRate

S T A R T R A T E
E N D R A T E
E N D A M O U N T

Business Site

Site
addRead ing
charge()
lastReading
prev iousReading
las tUsage
fuelCharge
baseTaxes
baseCharge
fue lChargeTaxes
isNotLatestReading
taxes

F U E L C H A R G E R A T E
T A X _ R A T E

Site

✻

	Chapter 15: A Longer Example
	The Initial Program
	The First Step in Refactoring
	Starting a Hierarchy of Sites
	Pulling up the zone and readings fields
	Decomposing the no-arg charge method
	Extracting a next day method

	Simplifying the Charge Methods
	Extracting summerFraction
	Extracting the fuel and tax calculations
	Turning the charge method into a template method
	Removing the usage argument
	Replacing start and end with a date range
	Merging the charge methods

	Decomposing Site’s Long Methods
	Decomposing summerFraction’s conditionals
	Extending Date
	Substituting an algorithm for summerFraction
	Decomposing the Base Charges
	Fixing up MfDate and Date Range

	Adding Lifeline Site to the Hierarchy
	Making Lifeline Site’s charge fit the template
	Refactoring Lifeline Site’s baseCharge
	Changing _readings to a Vector
	Maintaining the invariant for the readings

	Adding Business Site to the Hierarchy
	Making Business Site’s charge method fit the template
	A Second Attempt to Use a Rate Table
	Decomposing Business Site’s baseCharge

