Programming Methodology 145

Unfortunggely, Babbage never completed constru
machines. Sonighistorians believe that he never fipj

ge#tle was both brilliant and somewhat
: ofttalian organ grinders, for example). As
a consequence, he tendiyg projects midway through so that he could

approaches would let him ¢ a machine in less time than if he continued
with his old ideas.

Thus when he died, Babh#¢
partial drawings of designgg
a single working comp
ignored untit modern

mmed. The reason
he computation of
sduced by hand, a
ring dependad oF
res, Even though ¥
than a human, it
s was that it woul
nto a printing pres

ped. Only then did historians recognize
the true importang his contributions. Babb&ge stumbled upon the idea of the
computer a full céhtury before it was developed. Today we can only imagine how
different the world would be had he succeeded.

| into finania!

rogramming Methodology

struction was oo
Iso as to extract moL . ' l
o b The programming process consists of a problem-solving phase and an

implementation phase, In Chapter 1 we discussed some strategies for solv-
ing problems, and in Chapter 2 we saw how some simple programs are
implemented, Here we describe a methodology for developing data models
and algorithmic selutions for more complex problems. This methodology
will help you write algorithms that are easy to implement as Ada programs

and, consequently, programs that are readable, understandable, and easy to

he setoff ond

, could use iti debug and modify.

automatic oo .

through the MAg Top-Down Design

jtuted & Progis, . . o

somplexity auto Tl}e technique we use is known as top-down design (it's also called step-
onven by ofY ‘wise refinement and modular programming). It allows us to use the divide-

-and-conquer approach that we talked about in Chapter 1.

Top-down design A technique for developing a program in which the problem is
divided into more easily handled subproblems, the solutions of which create a

mbols. AS olution to the overall problem,
ical Engine WE o
owers and 1€ In top-down design, we work from the abstract {a list of the major parts
Jower ofap

a solution) to the particular (data types and algorithmic steps that can be
anslated directly into Ada code). You also can think of this as working

nd Design Methodology

\ Chapter 3 / Imputd
ementation

146
o details of impl

that leaves th
solution.

level golution
is to giv

o a fully detailed
to solve @ problem
m.” This is the mo

from & high-
unspeciﬁed downt
The easiest Way

«golve this proble

ing any of
that pmgrammers are called in. Qurj
a concrete solution—a prograr)
aking the solution into & geries of m y
ction—s0me of
an inde-

without gpecily

s of the programming
oject, we just
e chouse One subproblem at 4

The process

divectly.
write out all of the details?

is not the
1\ are more likely to

o
detail of the printing process. is write down @
id red”—and go on with the prob-
you can g0 bac

progrant.
forget some
abstract steP
\om at hand. Once you've comp

1o solving the step that does the galculation.

By subdividing the P te & hierarchical struc
vel of the iree isa i

ementation detail :
on details rernalnl unspectt;

for which the jmpk
1ementat'1
oblem 0F subprd

in which some imp
ollection of steps that sotves 8 P
d abstract steps:

Abstract step
Module A self—contained c
can contain hoth concrete an

Programming Methodology 147

Al

i %
P N - 2 i
ntation "gﬂm s modvle s often named man FiGURE 3-4
leme Hisrarchical Solution Tree
one else alfd Top Solve the problem " Abstract
ol

PIOblem 5) Level 0
ire problem Stap I
s at this point Step II
t solution into Step il

' i Level 1

Subproblem I Subproblem I ? Subproblem HI

[t |
-ould formul?l Step A Step C Step E
10 programining Step B StepD Step F
project, we just -
Subpl‘t)blem aj?' __
ms. The proce

all of the detall Subproblem A Subprolhlem B Subprciblem c Subprojblam F
C L 1 L Step 4 e
1 values and d R Step 2 2 gte - Step 7
1pproprlat9 Wi g ; .Stfap 3 8 Step6 - Stop 8.
1e purpose & ' ' ' :
are TNOTE IR e e o e ~} ———
is write do Lavel 3
on with the . - SubmebIem 2
o .-',Stﬁp_.#. o
S Stepe 1

Concrete

o

1ey Teappesl
;a molfhﬂe-:
he diagram.

Modules A module begins life as an abstract step in the next higher level
of the solution tree. It is completed when it solves a given subproblem:
when it specifies a series of steps that does the same thing as the higher-
level abstract step. At this stage a module is functionally equivalent to the

ahstract step.
5 are fully 8 P

15 remain BIE
problem oF

Functional equivalence A property of a module—it performs exactly the same
oporation as the abstract step it defines. A pair of modules are functionally equiva-
lent to each other if they each accomplish the same abstract operation.

\ Chapter 3 / Input and Design Methodology
ote steps that directly

A properly designed nodule contains only concr
address the given subproblem and abstract steps for significant newW sub-
ig called functional cohesion. The idea behind functional
tust one thing and do it well.

3 roblems. This &
‘ cohesion is that each module 8

Functional cohesion is not a well-defined propertys {here is NO quantitative

measure of cohesion. It is 8 product of the human aped to organize things

mber. Knowing

gtract is a mat-

into neat chunks that are gasy to understand and reme
which details to make concrete and which details to leave ab
cimumstance,.,and personal style. For example, you
printing module, if
hat it becomes con-

ter of experience
clude a field width calculation in 2
odulesot
erformed several times, it
ach time

might decide to In
he rest of the M
just vefer toite

there isn’t 100 much detailint
fusing. On the other hand, if the calculation is p
makes sense arate module and

to write it as a sep

you need it.
moéuié ’///~
: priy of 8 module in which all concrete steps are
ficant subproblems are

Note * Eoc? — .
Functional cohesion A Prop
ne problent, and any signi

Mok
" He dvree fole directed toward solving just 0
o written as ahstract steps.

N a\“) ‘\‘O
iting modules that

s one approach to WI

0 Yan oot
Q()r\ chie . Writing cohesive modules Here’
ﬁ{ thon c,og\f, ‘ are cohesive.
4, Think about how you would solve the subproblem by hand. -
5 Begin writing down the major steps. o
5. IHastepis simple enough so that you can see how {0 jmplement it
directly in Ada, tevel; it doesn’t need any further
refinement. E
4, Ifyouhave to think about implementing astepasas
3t is still at an abstr

al Ada statements,
of steps an
bypassing

r pisces that

steps or as sever
5, 1fyouare trying 1o write a series
details, you are pmbably

overwhelmed bY
1evels of abstraction. Stan pack and 1ook fo
write as more abstract steps- -

We could call this the “procrastinator‘s technique.” 12 ste
some Of difficult, put it off to a lower level; don't think ab

think about it tomorrow. Of course tomorrow does come
ied to the subproblen. A trouble

cus on it. And eventually

en down into manage .
As you work your way down the golution tree,
kward or WIong (

design decisions. if a decision proves aw
i willl), it's easy back up the tree t0 @ hi

fo hacktrack {go

\ Chapter 3 / Input and Design Methodology

ule) and vy something else. You don't have 10 gcrap your whole design—
only the small part you are working o1l There may be many iptermediate .
steps and trial solutions hefore you reach a final design.

The modules developed for the case studies throughout this book are
presented as though we wrote them down that way the first time. Nothing
could be further $rom the truth! The designs shown are the final product of
a long process of trying and discarding many different ones. To show all of
the intermediate attempis W de would easily double the size of this
toxt. So don’t hesitate sign and begin again. And don't be
discouraged if it takes yo to achieve 8 design. The

solving phase of the programming process takes time. If you
time analyzing and designing 2 solution, coding
menting the progra will

vowll find it gasier 10 implement £ you write the steps in

docode is a mixturé of English statements and Ada-like

control structures that can easily be translated into Ada. (We've been using
de in the algorithms in the problem-Solving Case Studies.) When

a concrete ste y i written in pseudomde, it should be possible to rewrite it |

directly as @ statement in & program.

ving a Desighn top-down design is a hierarchical

oblem wi i ’ . Figure 3-8 shows
the top-down Mesign we developedf At This kind of solu
tion forms the ba3 js for the implemp '
How do we {TdR
look closely at Figuroy An see that we can & e G
steps (those that are shg #ito a complete algorithm for solving th
problem. Their positl My thegtree determines the order in which they a
assembled. We 8 \ 7 he tree, at level 0, with the first ste
«Compute Fill Volume.” BECY is abstract, W6 must go 10 the ne
level, level 1. There we fi B0 of steps that correspond (are functio
ally equivalent} to thisftep. TIg first of these steps: «Compute T¥

Volume,” 18 abstract, v : % (0 the next level, level 9, There

find a corresponding divies of concrety £ steps becom™

the first patt of our orithm. PBecause

crete, we can go bagh a level 10 level 1 anggo on to

ing the Fill Volurge. This step {s concrete; e can copy
algorithm, Now fio are ready to return 1o Mol 0. The last
level O are abstnffct, s0 we work with ach of tem in order &

ing them concrete, Here’s the resulting nonhierarchical algorithm

