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struction was oo
Iso as to extract moL . ' l
o b The programming process consists of a problem-solving phase and an

implementation phase, In Chapter 1 we discussed some strategies for solv-
ing problems, and in Chapter 2 we saw how some simple programs are
implemented, Here we describe a methodology for developing data models
and algorithmic selutions for more complex problems. This methodology
will help you write algorithms that are easy to implement as Ada programs

and, consequently, programs that are readable, understandable, and easy to

he setoff ond

, could use iti debug and modify.
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somplexity auto Tl}e technique we use is known as top-down design (it's also called step-
onven by ofY ‘wise refinement and modular programming). It allows us to use the divide-

-and-conquer approach that we talked about in Chapter 1.

Top-down design A technique for developing a program in which the problem is
divided into more easily handled subproblems, the solutions of which create a

mbols. AS olution to the overall problem,
ical Engine WE o
owers and 1€ In top-down design, we work from the abstract {a list of the major parts
Jower ofap

a solution) to the particular (data types and algorithmic steps that can be
anslated directly into Ada code). You also can think of this as working
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Modules A module begins life as an abstract step in the next higher level
of the solution tree. It is completed when it solves a given subproblem:
when it specifies a series of steps that does the same thing as the higher-
level abstract step. At this stage a module is functionally equivalent to the

ahstract step.
5 are fully 8 P

15 remain BIE
problem oF

Functional equivalence A property of a module—it performs exactly the same
oporation as the abstract step it defines. A pair of modules are functionally equiva-
lent to each other if they each accomplish the same abstract operation.
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ule) and vy something else. You don't have 10 gcrap your whole design—
only the small part you are working o1l There may be many iptermediate .
steps and trial solutions hefore you reach a final design.

The modules developed for the case studies throughout this book are
presented as though we wrote them down that way the first time. Nothing
could be further $rom the truth! The designs shown are the final product of
a long process of trying and discarding many different ones. To show all of
the intermediate attempis W de would easily double the size of this
toxt. So don’t hesitate sign and begin again. And don't be
discouraged if it takes yo to achieve 8 design. The

solving phase of the programming process takes time. If you
time analyzing and designing 2 solution, coding
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