for i in lon: if i > n : return true return false

Every recursive program consists of:

- one or more base cases that return a pre-defined answer
- one or more recursive cases that compute solutions in terms of simpler problems

The recursive case consists of three steps:

1. Split the data into smaller pieces.
2. Solve the pieces.
3. Combine the solutions for the parts into a single answer.
4. Split the data into smaller pieces. ... based on the type of the argument
5. Solve the pieces.
... the "big" sub-problem is topologically similar to the original
6. Combine the solutions for the parts into a single answer.
... based on the type of function's value

When writing a program to process an inductively-defined data type,
the structure of the program should follow the structure of the data.
<list-of-numbers>
: : = ()
| (<number> . <list-of-numbers>)
<list-of-numbers>
: : = ()
| (<number> . <list-of-numbers>)
$\left(\begin{array}{lllll}26 & 37 & 41 & 25 & 12\end{array}\right)$
<list-of-numbers>
: : = ()
| (<number> . <list-of-numbers>)
$\left(\begin{array}{llll}26\end{array} \quad\left(\begin{array}{llll}37 & 41 & 25 & 12\end{array}\right)\right.$
<list-of-numbers>
: : = ()
| (<number> . <list-of-numbers>)

$$
\begin{aligned}
& \left(26 \cdot\left(\begin{array}{llll}
37 & 41 & 25 & 12
\end{array}\right)\right) \\
& (26 \cdot \text { list-of-numbers>) }
\end{aligned}
$$

<list-of-numbers>
: : = ()
| (<number> . <list-of-numbers>)
$\left(\begin{array}{llll}26\end{array} \quad\left(\begin{array}{llll}37 & 41 & 25 & 12\end{array}\right)\right.$
(26 . <list-of-numbers>)
26 <list-of-numbers>
<list-of-symbols>
:: = ()
| (<symbol> . <list-of-symbols>)

$$
\begin{aligned}
& \left(\begin{array}{lllll}
a & b & a & c & d
\end{array}\right) \\
& \text { (a . (b a cod)) } \\
& \text { (a . <list-of-symbols>) }
\end{aligned}
$$

(remove-first 'b '(a b c d))

(remove-first 'b '(b c d))

