
 for i in lon:
 if i > n:
 return true
 return false

Every recursive program consists of:

• one or more base cases that return
 a pre-defined answer

• one or more recursive cases that compute
 solutions in terms of simpler problems

The recursive case consists of three steps:

1. Split the data into smaller pieces.

2. Solve the pieces.

3. Combine the solutions for the parts
 into a single answer.

1. Split the data into smaller pieces.
 ... based on the type of the argument

2. Solve the pieces.
 ... the "big" sub-problem is
 topologically similar to the original

3. Combine the solutions for the parts
 into a single answer.
 ... based on the type of function's value

When writing a program to process
an inductively-defined data type,

the structure of the program
should follow

the structure of the data.

 <list-of-numbers>
 ::= ()
 | (<number> . <list-of-numbers>)

 <list-of-numbers>
 ::= ()
 | (<number> . <list-of-numbers>)

(26 37 41 25 12)

 <list-of-numbers>
 ::= ()
 | (<number> . <list-of-numbers>)

(26 . (37 41 25 12))

 <list-of-numbers>
 ::= ()
 | (<number> . <list-of-numbers>)

(26 . (37 41 25 12))

(26 . <list-of-numbers>)

 <list-of-numbers>
 ::= ()
 | (<number> . <list-of-numbers>)

(26 . (37 41 25 12))

(26 . <list-of-numbers>)

26 <list-of-numbers>

 <list-of-symbols>
 ::= ()
 | (<symbol> . <list-of-symbols>)

(a b a c d))

(a . (b a c d))

(a . <list-of-symbols>)

(remove-first 'b '(a b c d))

(remove-first 'b '(b c d))

