mutable data

define

versus

set!

An 1dentifier
is a name used 1n the code.

A binding
is a connection to a value.

A variable
1s an 1dentifier + binding.

How do functions retain access
to objects that existed when
the function was created?

The 1nterpreter creates a
closure.

A closure 1s a data structure:

CLOSURE

FUNCTION BINDINGS

Now we can understand how the
region of a variable is *notx
the same as the scope of the
variable.

(define make-counter

(lambda ()
(let ((n 0))
(lambda ()
(set! n (addl n))

n))))

[demo in Dr. Racket]

(let ((n 42))
(let ((clock-tick (make-counter)))

%éiock—tick)
.))

One approach 1s to use
message—-passing style

Create a function that receives a
symbol as 1ts argument and uses
the symbol to choose which
procedure to run.

(case transaction
('withdraw ...)
('deposit ...))

is equivalent to

(cond ((eq? transaction 'withdraw) ...)
((eg? transaction 'deposit) ...))

